
Decentralized Action Integrity
for Trigger-Action IoT Platforms

Earlence Fernandes
University of Washington

earlence@cs.washington.edu

Amir Rahmati
Samsung Research America

Stony Brook University
amir@rahmati.com

Jaeyeon Jung
Samsung

jae.jung@samsung.com

Atul Prakash
University of Michigan
aprakash@umich.edu

Abstract—Trigger-Action platforms are web-based systems
that enable users to create automation rules by stitching together
online services representing digital and physical resources using
OAuth tokens. Unfortunately, these platforms introduce a long-
range large-scale security risk: If they are compromised, an
attacker can misuse the OAuth tokens belonging to a large
number of users to arbitrarily manipulate their devices and data.
We introduce Decentralized Action Integrity, a security principle
that prevents an untrusted trigger-action platform from misusing
compromised OAuth tokens in ways that are inconsistent with any
given user’s set of trigger-action rules. We present the design and
evaluation of Decentralized Trigger-Action Platform (DTAP), a
trigger-action platform that implements this principle by over-
coming practical challenges. DTAP splits currently monolithic
platform designs into an untrusted cloud service, and a set of user
clients (each user only trusts their client). Our design introduces
the concept of Transfer Tokens (XTokens) to practically use fine-
grained rule-specific tokens without increasing the number of
OAuth permission prompts compared to current platforms. Our
evaluation indicates that DTAP poses negligible overhead: it adds
less than 15ms of latency to rule execution time, and reduces
throughput by 2.5%.

I. INTRODUCTION

Trigger-Action platforms are a class of web-based systems
that stitch together several online services to provide users
the ability to set up automation rules. These platforms allow
users to setup rules like, “If I post a picture to Instagram,
save the picture to my Dropbox account.” The ease of use and
functionality of such platforms have made them increasingly
popular [46], and several of them (e.g., If-This-Then-That
(IFTTT) [30], Zapier [18], and Microsoft Flow [5]) are on
the rise. Furthermore, with the rise in popularity of connected
physical devices like smart locks and ovens, we observe that
many trigger-action platforms have started adding automation
support for physical devices, making it possible for users to
set up rules like: “If there is a smoke alarm, then turn off my
oven” [22]. These platforms have privileged access to a user’s
online services and physical devices; thus they are an attractive
target for attackers. If they are compromised, attackers can

arbitrarily manipulate data and devices belonging to a large
number of users to cause damage.

To better characterize this risk, we perform a brief survey
of seven trigger-action platforms including an in-depth case
study of IFTTT, a widely used platform with over 11 million
users [29]. We find that trigger-action platforms support a
wide variety of business and IoT use-cases using a logically
monolithic design. This implies that if attackers compromise
the platform, they will be able to leak OAuth tokens for all
users. Indeed, compromise of web systems are commonplace.
Prominent examples include Equifax [2], Target [16], US
voters database [1], and Dropbox [9]. OAuth-specific attacks
are on the rise as well. Yang et al. [51] showed that 41%
of top 600 Android mobile applications, which use OAuth,
are susceptible to remote hijacking, and the recent Google
Docs OAuth-based phishing attack compromised one million
users [36]. We observe that cloud services, even well-designed
and tested ones, are not immune to persistent and sophisticated
threats.

Furthermore, through API testing techniques, we find that
in the case of IFTTT, the OAuth tokens it obtains for online
services are overprivileged. For example, we find that it is
possible to flash the firmware of a Particle chip, delete Google
drive files, and turn off video surveillance in a MyFox smart
home using IFTTT OAuth tokens. §III-B provides a more
comprehensive analysis of these issues. We note that this
risk of overprivilege is not isolated to IFTTT, but affects
trigger-action platforms in general that use OAuth—incorrect
OAuth scoping can lead to overprivilege—either trigger-action
platforms may request broad scopes or the online services may
only offer coarse-grained scopes. We conclude that beyond
attackers misusing OAuth tokens of a compromised trigger-
action platform, the overprivilege in the OAuth tokens extends
the abilities of the attacker to invoke API calls that are outside
the abilities of the trigger-action platform itself.

We show that it is possible to avoid this risk without losing
the benefits of a cloud-based trigger-action platform. To that
end, we introduce Decentralized Action Integrity. This security
principle ensures that an attacker who controls a compromised
trigger-action platform: (1) can only invoke actions and triggers
needed for the rules that users have created; (2) can invoke
actions only if it can prove to an action service that the
corresponding trigger occurred in the past within a reasonable
amount of time; and (3) cannot tamper with any trigger data
passing through it undetected. To enable these security benefits,
Decentralized Action Integrity makes use of four elements:

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23119
www.ndss-symposium.org

(1) Rule-specific tokens permit the bearer to execute a specific
API call of an online service; (2) Timely and verifiable triggers
ensure that the bearer of an OAuth token can invoke the action
portion of a user-created rule only when it can prove that the
triggering portion of the rule occurred within a reasonable
amount of time in the past; (3) Data integrity ensures that an
attacker cannot modify trigger data as it passes through the
platform; and (4) Tokens are decentralized. A compromise of
the platform does not leak tokens of all the users.

Decentralized Action Integrity is inspired by the end-to-end
argument for system design by Saltzer, Reed, and Clark [39].
Rather than depending on the cloud service of a trigger-action
platform, which can be compromised, to provide a proof that
tokens were not misused, the principle places verification
checks for misuse of OAuth tokens at the endpoints (i.e.,
online services) of the system. Additionally, our work draws
on the notions of Decentralized Trust Management [20], and
the Kerberos Ticket-Granting Ticket system (§VIII illustrates
these relationships in more detail).

We design, implement, and evaluate Decentralized Trigger-
Action Platform (DTAP), the first trigger-action platform sup-
porting Decentralized Action Integrity. Our design breaks down
the currently monolithic structure of trigger-action platforms
into an untrusted cloud service that executes user rules at large
scale and a set of trusted client applications, where each user
trusts their own client. While designing DTAP, there are a few
challenges. First, rule-specific tokens can lead to a drastically
increased number of OAuth permission prompts as users would
have to login and approve an OAuth scope request every time
they create a rule. The challenge is to gain the security of rule-
specific tokens but maintain the current trigger-action platform
experience where users approve OAuth requests only once
during a setup phase for each online service. DTAP overcomes
this challenge by using Transfer Tokens (XTokens). A small
trusted client installed on the user’s device uses an XToken to
automatically obtain a rule-specific token, which it transmits
to the cloud service for rule execution. Our implementation
encrypts XTokens at rest using a hardware-backed keystore
when available.

Second, DTAP requires the untrusted cloud service to prove
to the invoked action service that a trigger has occurred within
a reasonable amount of time in the past. As the cloud service
can be compromised, a possible design is to have the trigger
service communicate directly with the action service to verify
the occurrence of a triggering event. However, this introduces
an undesirable dependency between the action and trigger
services. DTAP avoids that by using a lightweight cryptographic
signature-based extension to the OAuth 2.0 protocol.

Our Contributions:

• We introduce Decentralized Action Integrity, a security
principle that prevents an attacker from using stolen OAuth
tokens in ways that are inconsistent with any given user’s
rules. We develop this principle based on a brief survey of
seven trigger-action platforms, and an in-depth case study of
IFTTT. Our analysis indicates that the logically monolithic
designs of current trigger-action platforms coupled with
overprivileged OAuth tokens pose a long-range large-scale
risk to the digital and physical resources of users (§III, §IV).

• We designed and implemented Decentralized Trigger-Action
Platform (DTAP), the first decoupled trigger-action platform
supporting Decentralized Action Integrity, where users do
not have to trust the cloud platform with highly-privileged
access to their online services (§V). DTAP splits the logically
monolithic trigger-action platform design into an untrusted
cloud service that executes rules at scale, and a set of clients
that help users create rules in a secure manner. DTAP is
based on cryptographic extensions to the OAuth protocol
that only allow the cloud service to execute user rules, even
if it is attacker-controlled.
• We evaluate DTAP using various micro- and macro-

benchmarks. Our evaluation shows that performance over-
head is modest (§VI): Each rule requires less than 3.5KB
additional storage space and imposes less than 7.5KB of
transmission overhead per execution. DTAP adds less than
15ms of latency to rule execution time. For rules in trigger-
action platforms, which typically send emails, SMSs, or
invoke actions on physical devices or on online services
over a network, we consider this additional latency to be
acceptable. DTAP reduces throughput by 2.5% for rule
execution.

We have designed Decentralized Trigger-Action Platform
as an extension to the OAuth 2.0 protocol which is used by
all current trigger-action platforms. Additionally, the protocol
extensions do not require changes to the existing infrastructure
of a trigger-action platform that is responsible for executing
rules at large scale. These two aspects of the design indicate its
wide applicability. Furthermore, our implementation provides
a library that enables developers of online services to add a
single line of code to gain the benefits of Decentralized Action
Integrity. Although this represents a change to existing online
services, we believe that DTAP is a valuable first step toward
a clean-slate design of trigger-action platforms with strong
security properties from the ground up.

II. BACKGROUND: TRIGGER-ACTION PROGRAMS AND
PLATFORMS

Trigger-Action platforms support stitching together various
online services APIs such that end-users may write simple
conditional programs. These simple programs often take the
form “IF triggering condition, THEN take a specific action.”
Examples include “IF smoke alarm has fired THEN turn off the
oven,” and “IF NASA posts a new Instagram picture, THEN
post it to my Dropbox.” Table I shows a set of trigger-action
platforms that we surveyed.1 Based on our survey, we adopt a
general terminology that describes the four main architectural
components of such platforms:

• Channel: A channel represents part of an online service’s
set of APIs on the trigger-action platform. Users connect
channels to their trigger-action platform accounts—a pro-
cess that involves user authorization. For example, a user
with a Facebook account must authorize the corresponding
Facebook channel to communicate with her Facebook ac-
count. Channels communicate with online services using
REST (Representational State Transfer) APIs operating over

1Our survey process was simple: create an account and create a single Rule,
and then browse through the list of available online services that integrate with
the platform.

2

Name Purpose # of Channels

IFTTT [30] IoT/Business/Smart Home 500+
Zapier [18] IoT/Business 750+

Microsoft Flow [5] Business 156
Stringify [15] IoT/Smart Home 74

Apiant [4] IoT/Business 15227
automate.io [6] Business 53
CloudWork [7] Business 91

TABLE I: A list of trigger-action platforms, which we briefly
surveyed, indicating their stated application area. Many of these
platforms support integration with physical devices.

HTTP(S). These online services use the popular OAuth
protocol to enforce authorization [31], [32]. Users must
connect several such channels, before they can accomplish
any useful work. Either the trigger-action platform developers
or online service providers can implement channels. In the
latter case, the trigger-action platform exposes a separate
API to channel writers to help them integrate their online
service with the platform. There is generally a one-to-one
correspondence between online services and channels in the
trigger-action platforms.

• Trigger: A channel may provide triggers, which are events
that occur in the associated online service. “A file was
uploaded to a cloud drive” or “smoke alarm is on” are
examples of triggers. These triggers correspond to APIs in
the trigger online service. The online services are REST
(Representational State Transfer) services that use JSON or
XML.
• Action: A channel may also provide actions. An action is

a function (or set of functions) that exists in the API of
the online service. Examples of actions include “turning
on a connected oven” or “sending an SMS.” In this paper,
we collectively refer to a channel’s triggers and actions as
operations.

• Rule: Rules are at the core of the trigger-action user
experience, and they are the core functionality that these
platforms enable. A rule stitches together various channels
to achieve useful automation. A typical rule has two pieces.
The “If” piece represents a trigger or an event that occurs
on an online service. The “Then” piece represents an action
that should be executed on the online service. For example,
“If there is a smoke alarm, then turn off my oven.” This
rule integrates the smoke alarm channel’s “alarm is on”
trigger with the oven channel’s “turn off the oven” action.
Some trigger-action platforms permit a single trigger and a
single action (e.g., IFTTT), some permit multiple triggering
conditions and actions (e.g., Zapier), if-then-else conditions
(e.g., Microsoft Flow), and even mathematical functions
while combining triggering data (e.g., Stringify).

A trigger-action platform takes the form of a cloud service
that executes rules at large scale. For example, IFTTT currently
supports 11 million users, 54 million rules, and 1 billion rule
executions per month [29]. The cloud service provides accounts
where users can create rules using a simple UI. All the platforms
we surveyed also provide mobile apps that serve as an interface
to the cloud service. Therefore, a trigger-action platform is
technically a combination of a cloud service and a mobile app.
For brevity, we refer to the cloud service of a platform as the
trigger-action platform, unless stated otherwise.

Lock
Unlocked

Lock
Locked

August Lock Channel
Oven

Turned On

Oven
Turned Off Turn Off Oven

Set to Sabbath
Mode

GE Oven Channel

Lock
Locked

Turn Off
Oven

Rule

August Lock
Service APIs

GE Oven
Service APIs

OAuth OAuth

Fig. 1: Overview of trigger-action platform architecture in the
context of a rule. Online services have a channel inside the
platform. These channels gain access to online service APIs
by acquiring an OAuth token during the channel connection
step. A Rule combines a trigger and an action.

All of the platforms we surveyed use OAuth as the primary
integration mechanism—this is expected as most of the online
services today support OAuth based access for third parties.
Our focus is on ensuring that a user’s online services (and
hence digital and physical resources connected to those online
services) are protected from misuse. Therefore, we discuss the
general authorization model of trigger-action platforms next.

Authorization Model. Online services protect their REST
APIs using authorization protocols. OAuth is a popular choice
that enables an online service to provide third parties with
secure delegated access to its APIs. A trigger-action platform
must obtain authorization to communicate with online services
that its channels represent; and therefore must follow the
OAuth authorization workflow. Figure 2 shows the four-step
authorization model.

First, a channel developer (trigger-action platform develop-
ers or the online service provider itself) must create a client
application for the online service’s REST API. This client
application represents a channel on the online service. During
the sign-up phase, the online service assigns a client ID and a
secret that the trigger-action platform uses during authorization.

Second, a user initiates a channel connection within the
trigger-action platform administrative interface and this causes
the platform to initiate the OAuth 2.0 authorization code flow—
the recommended workflow for server-to-server authorization—
that results in the platform requesting the corresponding online
service for a short authorization code on behalf of the user.
The platform passes a client identifier value, a redirect URI,
and a scope value as part of the HTTP(S) request. The scope
value represents the level of access the trigger-action platform
is requesting to operate a channel. This authorization request
results in the user being presented with an OAuth permissions
screen that explains the scope that the platform is requesting.
As the OAuth protocol does not specify the design of the
permissions screen, the screen design, scope explanations, and
UI options to modify the requested scopes is at the discretion
of the online service.

3

User Service

Request Authorization Code
[Client ID, Redirect URL, Scope, …]

Login & Authorize

Request User Authorization

Authorization Code

Request Access Token
[Client ID & Secret, Auth. Code, …]

Access Token

API Call

API Response

Request Channel Connection

setup IFTTT Client application
[Client ID, Secret, …]

Channel Signup
Phase

User-to-Service
Authorization

Service-to-Service
Authorization

Activity
Phase

Trigger-Action
Platform

Fig. 2: The OAuth-based authorization model for trigger-action
platforms has four phases. Channel developers create client
applications for the online service that results in the online
service assigning a client ID and secret to the application. Then,
the trigger-action platform initiates an authorization workflow.
The OAuth 2.0 authorization code flow is a popular choice,
and it results in the platform gaining a scoped bearer token that
authorizes a channel to invoke APIs on an online service. Users
are prompted to approve scope requests during this process.

Third, assuming the user accepts the scope request, the
online service redirects to the trigger-action-platform-provided
redirect URI with a short authorization code as an argument.

Finally, the platform exchanges the authorization code,
client ID, and client secret for an access token using server-to-
server communication. The trigger-action platform then uses
the OAuth bearer token to initiate API calls on the online
service to implement channel functions.

Although OAuth 2.0 is by far the most popular authorization
protocol in trigger-action platforms, there are online services
that use OAuth 1.0a. OAuth 1 does not have explicit scoping as
part of its authorization workflow, but offers a similar concept
when a client application signs up for the online service’s API.
During this phase, the developer can choose scopes to enable.
For example, Twitter uses OAuth 1.0a, and it provides a settings
item that allows a developer to change the access level of the
client application, and hence, to change the scope of any tokens
issued in the future.

III. SECURITY IMPLICATIONS OF TRIGGER-ACTION
PLATFORMS

In this section, we discuss the security risks that trigger-
action platforms pose to a user’s digital and physical resources.
We focus on risks that arise due to high-level design choices,
and do not focus on low-level implementation errors that might
enable these risks (e.g., XSS, SQL Injection, OS bugs). The
risks we focus on are due to a compromise of the trigger-action
platform, and are due to OAuth deployment issues. We do not

focus on a compromise of the online services of the users—
such an attack is independent of any trigger-action platform.
For example, if a user’s Facebook account or Google Home
account was hacked, then an attacker can manipulate data and
devices independently of any trigger-action platform the user
may be using.

A. Platform Compromise

Cloud services, including trigger-action platforms, can be
compromised through bugs in its implementation or design,
through social engineering attacks, or through a combination
of these. As all of the platforms we discussed in §II are cloud
services, an exploit could target any software in the web stack.
Indeed, such compromises are common occurrences today. In
2015 alone, more than 700 million user records were exposed
through 1673 data breaches [8]. Prominent examples of cloud
service breaches include Target [16], US voters database [1],
Dropbox [9], and the recent Google Docs OAuth-based phishing
attack that compromised one million users [36]. Therefore, even
well-designed cloud services are not immune to persistent and
sophisticated threats.

Thus, we are concerned with the risks posed to users’ digital
and physical resources as a result of a trigger-action platform
compromise. The main security mechanism guarding user
resources is the set of OAuth tokens. These OAuth tokens are
often long-lived.2 An attacker who compromises the platform
will be able to use the OAuth tokens to invoke operations on
the users’ resources arbitrarily.

Furthermore, trigger-action platforms today follow a logi-
cally monolithic design—a compromise of the platform implies
that OAuth tokens for all users will be accessible to the attacker.
Therefore, we conclude that the choice of standard OAuth
tokens coupled with a logically monolithic design poses a
large-scale security risk to users’ digital and physical resources.

B. Risks from OAuth Token Compromise

Trigger-action platforms do try to limit the risks of misuse
of OAuth tokens by constraining the set of operations available
on the channels. For example, IFTTT does not expose the
operation of deleting files on the Google Drive channel because
deleting files is considered too risky (it can lead to accidental
or malicious loss of all data on a user’s Google drive). A
research question is whether the OAuth tokens acquired by
these services, if compromised, can be misused to perform risky
operations. We call this the problem of overprivileged tokens.
We performed a case study on the popular IFTTT trigger-action
platform to study the overprivilege aspect. We note that it is not
our aim to be exhaustive in our analysis of overprivilege, as it is
a known problem in OAuth systems—for example, Chen et al.
discuss OAuth issues in the context of mobile applications [21].
Rather, our goal here is to highlight the risks that still exist
in trigger-action platforms, despite attempts to limit them by
eliminating dangerous operations on their channels.

2Even if they are not, these tokens can be refreshed using information stored
in the trigger-action platform.

4

Channel Scope Example Overprivileged APIs Description
Google Drive drive, user.info,

userinfo.profile,
feeds, feed,
spreadsheets,
documents

https://www.googleapis.com/drive/v3/files/file-id Deletes a file

https://www.googleapis.com/drive/v3/files/file-id/permissions Creates a permission
for a file

https://www.googleapis.com/drive/v3/files/file-id/revisions/rev-id Permanently deletes a
revision of a file

Particle ifttt https://api.particle.io/v1/devices/device-id Flashes a device with a
pre-compiled binary

https://api.particle.io/v1/devices/device-id Unclaims a device

https://api.particle.io/v1/devices/device-id WITH BODY
name=new name

Renames a device

MyFox Home Control nil https://api.myfox.me:443/v2/site/site-id/device/cam-id/camera/
recording/stop

Stops camera recording

https://api.myfox.me:443/v2/site/site-id/device/dev-id/heater/on Sets heater to ‘on’
mode

https://api.myfox.me:443/v2/site/site-id/device/dev-id/socket/on or /off Turns a device on or off

TABLE II: Examples of overprivileged APIs that IFTTT channels can access. These APIs are not used in any triggers or actions.
We shortened Google Drive scope names for brevity.

1) Case Study Procedure: The goal of our case study is
to examine the use of overprivileged tokens in trigger-action
platforms. We focused our case study on IFTTT [10] due
to its popularity and integration with a wide variety of IoT,
smart home devices, and online services. For our study, we
selected channels which had their online service API open
to developers. Studying these channels and comparing their
triggers and actions with the capabilities of the OAuth token
obtained by IFTTT allowed us to isolate API calls that are
not used by any trigger or action, but are accessible using the
OAuth token.

2) Case Study Results: Table II shows a summary of our
case study results. We find that in all cases, the OAuth tokens
that IFTTT possesses are overprivileged. The root cause for
overprivilege arises from:

• Coarse-grained scopes: Online services were not designed to
support only trigger-action platforms. They are designed to
support the most general of use cases. Therefore, the OAuth
scopes are often coarse-grained, and may not necessarily be
fine-grained enough to support only the set of trigger and
action functions for channels in the IFTTT platform. This
problem is not unique to IFTTT. Rather, it is common to all
trigger-action platforms.

• Balancing usability and security: The channel abstraction
strikes a balance in the usability-security trade-off. Users
must “connect” a channel to their account on IFTTT and
this includes the user following an OAuth authorization flow.
As this process is done once per channel, users do not
have to perform OAuth authorization flows whenever they
create a rule. Alternatively, users would have to perform an
authorization flow for every rule they create if the channel
abstract did not exist, leading to a drastic increase in the
number of permission prompts. Although the channel design
reduces the number of OAuth permission prompts to one per
channel connection step, it does force IFTTT to request
OAuth scopes that are powerful enough to execute all
operations that it currently supports, and possibly even future-
proof itself by requesting a coarser-grained set of scopes

for operations that might be supported in the future. This
problem is not specific to IFTTT. Rather, it is common to any
trigger-action platform that supports the channel abstraction.

We provide more detail on the overprivilege in our case
studies below:

Google Drive. Our API testing reveals that the Google Drive
IFTTT channel has the ability to delete a user’s files. We
confirmed this behavior using a token with the same scope as
what the Google Drive IFTTT channel requests. This can cause
data loss if the corresponding token is stolen. We observe that
the Google Drive channel requests multiple scopes. However,
the OAuth prompt only provides the user with a binary choice
of approving or denying the request.

Particle. Our API testing reveals that the Particle IFTTT
channel has the ability to flash new firmware to a chip. We
used a token with scope=ifttt, which is identical to what
the Particle IFTTT channel requests, and reprogrammed a chip
by simply using a REST API call. This can completely change
the functionality of the Particle chips and cause a variety of
security and safety issues if the corresponding token is stolen.
We also observe that the Particle OAuth prompt only provides
the user with a binary choice of either approving or denying
the permission request.

MyFox Home Control. This channel can arm or disarm the
MyFox security system. However, our API testing reveals that
it has overprivileged access to the MyFox Home Control API
that allows it to stop live video recording, turn on/off electric
devices, and change the state of the heaters. This can result
in security breaches, overheating and large utility bills if the
corresponding token is stolen. We also observe that MyFox
Home Control does not provide any kind of scoped access.
This forces the channel to request complete access to the API.
Furthermore, the MyFox Home Control OAuth prompt only
provides a binary choice during authorization—either approve
all requested permissions, or deny the request.

We conclude that the OAuth tokens that trigger-action
platforms negotiate can be overprivileged: (1) online services

5

only provide a fixed set of scopes that can be incompatible
with the channel operations of the platform, forcing it to
request overprivileged access, (2) the usable channel abstraction
necessitates tokens that can invoke multiple APIs in the online
service, even if the user does not create rules that use all those
APIs.

Therefore, trigger-action platforms pose a long-term security
risk to users’ digital and physical resources. An attacker who
compromises the platform can misuse OAuth tokens to execute
APIs arbitrarily, and can even invoke APIs outside the abilities
of the trigger-action platform itself due to overprivilege.

IV. TOWARDS MITIGATING RISKS OF TRIGGER-ACTION
PLATFORMS

Our high-level goal is to develop a defense mechanism that
mitigates the security risks outlined above. In this section, we
first discuss our threat model, which we derived from our earlier
analysis. We then explore candidate designs and highlight their
shortcomings. Finally, we introduce the Decentralized Action
Integrity concept, and discuss why it provides meaningful
security guarantees for trigger-action platforms. We also discuss
challenges in applying this concept to real platforms.

A. Threat Model

We adopt a strong but realistic attacker model—we assume
that the trigger-action platform is untrusted, and can be
compromised. An attacker can leak OAuth tokens, and then
attempt to invoke actions arbitrarily. An attacker can also
try to manipulate any triggering data passing through the
platform. We assume that the online services of the user such
as Facebook, Samsung SmartThings etc., are not compromised.
If they are compromised, then an attacker can achieve its goals
independently of the trigger-action platform.

The following aspects are outside our threat model. We do
not prevent leakage of sensitive data (e.g., the fact that a trigger
has happened, or an attacker eavesdropping rule execution)
from a compromised trigger-action platform (§VII contains a
discussion of techniques to enable data confidentiality). We
also do not prevent denial of service attacks.

B. Design Space Exploration

Under the above threat model, we discuss candidate designs
to mitigate the security risks of a compromised trigger-action
platform. We also highlight where these candidate designs
fall short of providing necessary security and functionality
properties. Our goal is to prevent attackers who have stolen
the platform’s OAuth tokens from arbitrarily invoking actions.
We are concerned with actions because they have the ability
to change the state of data and devices. In a physical setting,
this can have dangerous physical consequences.

Short-Lived OAuth Tokens. One option is for online services
to issue OAuth tokens that must be refreshed frequently. If the
trigger-action platform is compromised, the online services can
simply stop processing refresh requests from the trigger-action
platform, and it can expire all issued tokens. This technique
reduces the useful attack window to the refresh interval plus
the time it takes for the knowledge that the platform was
compromised to propagate to the online services. However, it

relies on timely detection of the compromise. The strategy also
depends on the existence of a separate signaling mechanism
that the platform operator can use to contact the online services,
as the platform itself is under the control of the attacker in the
worst case.

Fine-Grained Tokens and Per-Rule Permission Prompts. If
online services support very fine-grained tokens, trigger-action
platforms could request tokens whenever a user programs a rule.
Therefore, the trigger-action platform only has the amount of
privilege necessary to execute rules. However, this increases the
number of permission prompts for users, leading to usability
issues. Additionally, attackers can still misuse fine-grained
tokens. As we discuss later, our work improves on this basic
approach by solving the misuse and usability issues.

Avoiding Bearer Tokens. Another solution is to use OAuth 1.0
tokens because these are not immediately useful to attackers if
they are stolen in isolation. It requires stealing the signing key
as well. However, if the trigger-action platform is compromised,
then the attacker gains access to the signing key as well.

Fully Decentralized Platform Construction. A different
approach would be to avoid amassing OAuth tokens in a cloud
platform and provide trigger-action functionality to each user
through a client that executes rules on their own machine (e.g.,
mobile phone, voice-enabled assistant, or smart home hub for
IoT scenarios). While this model removes the trigger-action
platform as the single valuable target, it does not provide the
benefits of cloud services such as fault tolerance, convenience,
and availability.

Rule Analytics/Anomaly Detection. An analytics or anomaly
detection system could potentially determine if certain opera-
tions are inconsistent with the set of user rules. Although this
is a good defense-in-depth measure, it does not address the
root of the problem—until a detection occurs, the attacker can
cause harm. Furthermore, such systems typically require fine
tuning of false positives and negative rates.

C. Decentralized Action Integrity

None of the above candidate designs prevent a compromised
trigger-action platform from arbitrarily manipulating data
and devices. In this section, we introduce the principle of
Decentralized Action Integrity. A trigger-action platform that
adheres to this principle drastically reduces the power of an
attacker who compromises the cloud service component of a
trigger-action platform: It prevents arbitrary misuse of action
functions, and it prevents all users from being affected if the
platform is compromised, even with leaked OAuth tokens. This
concept manifests itself through the following four elements:

• Rule-specific OAuth tokens: If attackers obtain rule-specific
tokens, they can only use the tokens to execute operations
on the online services specific to rules that a user explicitly
creates. For example, consider the rule “IF smoke is detected
THEN turn off oven.” The trigger-action platform would
need two rule-specific OAuth tokens. One token allows it to
only setup a callback for the smoke event. The second token
allows it to only turn off the oven. Therefore, rule-specific
tokens only allow the bearer to execute a REST APIs in
the online service that are specific to a given rule. A rule-
specific token can also constrain the arguments of an API

6

call. For example, it is possible to mint a rule-specific token
that only allows the bearer to set a thermostat to 68 degrees
Fahrenheit.

• Timely and verifiable triggers: The bearer of a rule-specific
OAuth token can only execute an action function if it can
prove that the corresponding triggering event was true within
a reasonable (configurable) time period. Considering our
example rule above, the bearer of the rule-specific token for
the oven online service can only turn off the oven if it can
prove to the oven service that the triggering event (smoke
was detected) is true. If the platform attempts to turn off
the oven without the proof of trigger occurrence, then the
operation is denied.

• Data integrity: Any triggering data passing through the
cloud service of the trigger-action platform should not be
tampered with. Consider the rule “IF new NASA Instagram
post, THEN save the picture to my Dropbox.” It should not be
possible for a compromised cloud service of a trigger-action
platform to replace the Instagram image with malware.

• Decentralized tokens: Compromise of the cloud service of
the platform should not imply that all tokens are leaked.
There should not be a single point of failure.

The above four elements prevent an attacker with access
to the OAuth tokens of a rule from arbitrarily invoking the
action function, and they prevent a compromise of the platform
from affecting all users of the platform. Rule-specific OAuth
tokens combined with timely and verifiable triggers provide
the security property of action function misuse prevention and
trigger misuse prevention (§V-A).

Supporting Decentralized Action Integrity in a practical
trigger-action platform requires overcoming several challenges.
We discuss them next.

• Rule-specific tokens will drastically increase the number
of OAuth permission prompts because the platform can
only negotiate such tokens when the user is programming
a rule. Connecting a channel to a user account will not
involve negotiating any rule-specific tokens as the user is
not programming any rules at channel connection time.
The challenge is to maintain the same number of OAuth
permission prompts while supporting rule-specific tokens.

• Verifying that a triggering event was true can introduce
an undesirable dependency between the trigger and action
service. In a naı̈ve design, a way to support this proof would
be to make the trigger service send an out-of-band signal
to the action service whenever a trigger event occurs. This
completely defeats the purpose of trigger-action platforms,
which is to connect online services that have no common
connections.

V. DECENTRALIZED TRIGGER-ACTION PLATFORM DESIGN

In this section, we discuss the design and implementation of
Decentralized Trigger-Action Platform, a trigger-action platform
that embodies Decentralized Action Integrity. We also discuss
how our design overcomes the challenges discussed above.
Our design introduces extensions to the OAuth protocol to
ensure that a compromised trigger-action platform only has
the necessary amount of privilege to execute the set of rules
of a given user and that it cannot execute any actions that

User

User

Trigger-Action
Platform

Online
Services

Tokens
Recipes

Tokens

Recipes

User

User

DTAP- Cloud Online
Services

XTokens

DTAP
Client

XTokens

DTAP
Client

Recipes

Recipes

Recipe
Tokens

Recipe
Tokens

(b) DTAP

(a) Insecure Trigger-Action Platform

 OAuth negotiation

 Recipe
Execution

 Recipe
Execution

 OAuth
negotiation

 OAuth
negotiation

Recipe
Setup

Recipe
Setup

Recipe Setup

Recipe Setup

 OAuth negotiation

Fig. 3: High-level comparison between (a) insecure trigger-
action platforms and (b) DTAP. Instead of storing the over-
privileged tokens in the cloud, each user takes advantage of
a DTAP-Client to secure his tokens. Only recipes and recipe-
specific tokens reside in the DTAP-Cloud. DTAP guarantees
that no other action other than the one specified in the recipes
can be performed using the recipe-specific tokens. We note that
the DTAP-Clients are not created or managed by the DTAP-
Cloud. They are independent entities—a compromise of the
DTAP-Cloud does not compromise a DTAP-Client.

are inconsistent with a user’s rules. Where applicable, we cite
IFTTT as a prototypical trigger-action platform.

Figure 3 provides a high-level comparison between Decen-
tralized Trigger-Action Platform and current insecure designs.
Decentralized Trigger-Action Platform splits the logically
monolithic trigger-action architecture into a cloud service
(DTAP-Cloud) that users do not trust, and one client per user,
(DTAP-Client), that is trusted by its user. The DTAP-Cloud
provides computational infrastructure to execute rules at large
scale, similar to a trigger-action platform’s cloud infrastructure.
Each user must install a DTAP-Client on a device such as a
smartphone. Users connect channels to their accounts and setup
trigger-action rules with the help of the their clients. A user
trusts its own client to manage highly-privileged access to their
online services. The client can use hardware-backed secure
storage (e.g., secure keystore available on both iOS [19] and
Android [34]) to ensure the security of these tokens.

Trust Model. We designed the OAuth protocol extensions for

7

DTAP to be open allowing anyone to implement the client
portion of the protocol. Our design requires the clients to
not be implemented by the same entity implementing the
untrusted cloud service. Instead, we envision a community
of developers building client applications and hosting them
at various market places, e.g., Android or Apple store. These
app market models naturally result in a few well-built apps
emerging, thus making it easy for users to install relatively good
and secure implementations of the DTAP-Client. An example
of such behavior exists with widely-used protocols—there are
hundreds of SSH apps on Google Play, but only a handful have
the highest ratings and installations. We see this kind of behavior
for other protocols as well—Telnet, FTP, etc. We envision a
similar model for the trusted clients. Additionally, the open
source community can independently vet open source clients.
Our design also requires the online services (e.g., Facebook,
Dropbox, SmartThings REST services) to not be compromised
and to be trusted by the user. Finally, our design requires
a method for an online service to cryptographically verify
statements generated by another online service. The current
prototype leverages the existing certificates (keypairs) in the
public key infrastructure already in place for online services.
However, this is merely a deployment convenience.3 As we
discuss in §VII, from the viewpoint of key re-use, a cleaner
implementation is to use self-signed certificates, as one of the
basic properties of our protocol is to ensure that a statement
from an online service has not been forged or tampered with.

As is the case with a typical trigger-action platform, there
are two phases to create a rule: Channel Connection, and Rule
Setup.4 We will discuss how these two phases work in our
design, with the help of an example rule shown below. Without
loss of generality, and for simplicity, this rule: (1) does not
contain predicates in the condition. See §V-C for an explanation
of how DTAP handles predicates securely; (2) contains a single
trigger and single action. Although this is the most widely used
and supported type of rule, there are trigger-action platforms
that support multiple actions (including IFTTT) and sometimes
multiple triggers. Handling extra triggers and actions does
not affect our protocol—the trusted client and online service
endpoints simply have to repeat the steps for a single-trigger
single-action rule.

IF new_item added to ShoppingList THEN
email new_item to x@y.com

Decentralized Trigger-Action Platform introduces two types
of OAuth tokens:

• Rule-Specific Token: This token is fine-grained, and only
allows the bearer to execute a single function with specific
parameters on an online service. The DTAP-Client transmits
this token to the untrusted DTAP-Cloud, where it is used to
execute a user’s rules. We introduce rule-specific tokens to
limit the abilities of an attacker who steals them.

• Transfer Token (XToken): This token is coarse-grained,
and it permits the bearer to negotiate a rule-specific token

3Our measurements of 297 IFTTT channels indicate that only 2 used HTTP,
while all others used HTTPS.

4We discuss channel signup after these two steps even though Fig. 4 depicts
signup before these two steps because signup is an activity performed by
online service developers instead of users.

without creating an OAuth permission prompt. It is never
provided to the untrusted cloud platform and is only used by
a DTAP-Client to acquire rule-specific tokens directly from
an online service. When available, our design leverages a
trusted-hardware-backed keystore to encrypt XToken storage
when they are not in main memory (§VI). We introduce the
notion of an XToken to maintain the usability experience of
one-time authorizations of channels, and to gain the security
of rule-specific tokens.

Channel Connection. In our system, a user connects channels
using the user-specific client, typically running on user’s
smartphone or a trusted hub within the user’s home. To create
the above rule, the user first connects the ShoppingList and
Email channels (assuming they haven’t been connected before).
This involves the usual step of the user logging in to the services
corresponding to the channels with a username and password,
and eventually accepting the OAuth scopes being requested.
During the subsequent OAuth negotiation, the DTAP-Client
requests and receives an XToken.

Rule Setup. Once the user has connected the trigger and action
channels, the next step is to setup the trigger part of the rule.
This involves navigating a UI and eventually clicking on one of
the trigger functions that the channel offers (see Figure 5). The
DTAP-Client retrieves a list of trigger and action names from the
trigger and action services during channel connection, and then
displays them in the UI. There is a one-to-one correspondence
between trigger and action names displayed in the UI, and
the actual scopes that are eventually requested by the DTAP-
Client on behalf of the user. Therefore, the process of inferring
the trigger or action scope the user intends on granting is
straightforward.

For our example rule, OnNewItem is a trigger that fires
whenever a new item is added to the user’s shopping list.
DTAP-Client will treat the physical act of the user clicking
a specific trigger function in the trusted client UI as an
implicit authorization for it to obtain a rule-specific token
that can only execute OnNewItem. In this way, our design
avoids introducing additional permission prompts even though
it uses fine-grained tokens (see §IV-B). It transmits the XToken
it obtained earlier to the trigger online service including
information about the specific function for which it wants
a rule-specific token. As a return value, the trigger service
will also transmit its X509 certificate to the client and the
rule-specific token (Figure 4).

Rule-specific token example. Assume that the ShoppingList
service offers two functions that external parties may call:
test(), and OnNewItem(String URL). The XToken
allows the bearer to obtain a rule-specific token for any of
these supported functions. In our example rule, an external
party only needs to call OnNewItem with a String value
of “https://DTAP-cloud.com/new item.” Therefore, the client
can obtain a rule-specific token scoped to only execute
OnNewItem(‘https://DTAP-cloud.com/new item’). That is, a
scope in DTAP is equivalent to the name of a function in an
online service.

Our design relies on two principles to overcome the
challenge of an increased number of prompts while using
fine-grained tokens:

8

Trusted Client Trigger Service

Request Trigger Token
[Trigger XToken]

[Trigger Token, Trigger Cert]

setup IFTTT Client ContractChannel
Signup Phase

Channel
Connection Phase

DTAP
Action Service

setup IFTTT Client Contract

Trigger Token

[Action Xtoken, Action Scope, Action Parameters, Trigger Scope, User ID. Trigger Cert]

Action Token

Trigger Setup

Action Token

OAuth Transaction
Scope=XToken

OAuth Transaction
Scope=XToken

Trigger
XToken

Action
XToken

Action Setup

 Request Action Token

Fig. 4: DTAP authorization has four phases: Channel signup phase, where the clients obtain scope-to-function maps for every
online service; channel connection phase, where the clients gain XTokens to online services the user wishes to use; and trigger
and action setup phases where these tokens are used to request rule-specific tokens.

Fig. 5: Inferring user policy via user-driven access control
in DTAP. The DTAP-Client enumerates possible triggers and
actions. When a user clicks on a specific trigger and action,
DTAP-Client automatically treats that as authorization from
the user to negotiate rule-specific tokens. There is a one-to-one
correspondence between trigger/action names and the scopes.

• The user authorizes the client to obtain an XToken when a
channel is connected. This does not change the number of
permission prompts for a user—it is the same as existing
trigger-action platforms like IFTTT. The XToken has the
property of allowing the client to obtain a rule-specific token
without creating a permission prompt, as the user has already
given the client that amount of privilege by authorizing it to
obtain an XToken.

• The client only uses the XToken upon an explicit user
interaction. This notion is inspired by User-Driven Access
Control [38].

Setting up the action part of the rule is similar to setting
up the trigger part. The user will navigate a UI and implicitly
authorize the client to obtain a rule-specific token to invoke a
particular action function. However, the token exchange process
is slightly different. As Figure 4 shows, the DTAP-Client

will transmit the action XToken, the trigger service’s X509
certificate, the name of the trigger function (OnNewItem), the
action function name (send_email), the triggering service
user ID of the current user, and any action function parameters
to the action service. The action service will return a rule-
specific token and will associate all of this information with
that token internally, effectively tying the issued token to a
particular triggering function, a particular action function, and
a particular user.

At this point, the DTAP-Client has obtained two rule-
specific tokens needed to execute the rule. It transmits these
tokens along with a description of the rule to the DTAP-Cloud
that uses the trigger token to set up a callback to itself whenever
the trigger condition (i.e., new item added to shopping list)
occurs.

We note that rule setup involves the trusted client, and
therefore, depends on the availability of this client. Unlike
in today’s trigger-action platforms that host the rule setup
interface as a highly available cloud service, our design permits
rule programming only when a user client (such as a phone
app or desktop app) is available. We do not view this as a
significant shortcoming considering the rarity of rule setup and
overall improvement in security. Furthermore, the most critical
function of trigger-action platforms—executing rules at large
scale—runs independent of the trusted client and therefore
retains the benefits of cloud computing for high reliability and
availability.

Channel Signup. Currently, a trigger-action platform knows
which scopes to request for various trigger and action functions
because channels store that scope-to-function mapping in the
platform’s cloud infrastructure. However, in our case, this

9

infrastructure is untrusted. DTAP-Cloud could manipulate
scope-to-function mappings to trick the clients into requesting
the wrong scopes. Our design solves this problem by requiring
the online services to create a signed scope-to-function mapping
and host those mappings at a well-known location. An online
service signs its mapping using the private key corresponding to
its X509 certificate. The clients retrieve these signed mappings
during the channel signup phase (Figure 4).

Rule Execution. At runtime, whenever a new item is added to
the shopping list, the trigger service will generate an HTTP call
to the DTAP-Cloud and pass the trigger data (in our example
rule, this will be the item that was added to the shopping list).
DTAP changes this process slightly, and instead requires the
trigger service to generate a trigger blob (see Figure 6):

TriggerBlob = [Time, TTL, TriggerScope,

b64(TriggerData), UserID, SIG]

SIG = Sign with SHA256(TriggerServicePrivateKey,

T ime|TTL|TriggerScope|b64(TriggerData)|UserID)

The public key of the signing trigger service private key was
transmitted to the action service as part of the setup process.
Time is the timestamp when the blob was created, and TTL
specifies the period for which the blob is valid. Once the trigger
service creates this blob, it will transmit it to the DTAP-Cloud.
At that point, the DTAP-Cloud will lookup the appropriate rule,
and then invoke the action function using the rule-specific token
it obtained earlier. During this invocation, the DTAP-Cloud
will make an HTTP request and include the trigger blob, the
rule-specific action token, and parameters.

We note that during rule execution, neither the XTokens,
nor the trusted clients are involved. Execution proceeds only
with the rule-specific tokens. Therefore, our design retains the
benefits of highly-available cloud services.

End-to-End Rule Verification. The DTAP-Cloud executes the
rule by transmitting the trigger blob and the action token to
the action service (Fig. 6). The action service will first execute
a lightweight verification process before invoking the target
function. The verification steps are:

V1: Verify that the passed rule-specific token exists.
V2: Verify the signature on the trigger blob using the X509

certificate of the triggering service. b64 denotes base 64
encoding. The action service does not need to interpret the
format of the triggering data. It just needs to verify the
signature over the entire triggering blob, which contains
base 64 encoded trigger data.

V2.1: Ensure that Time > PreviousT ime where Time is
an extracted time stamp from the passed trigger blob,
and PreviousT ime is the previously seen value for this
triggering service. This prevents replay attacks from a
compromised DTAP-Cloud if the attack occurs inside the
TTL (see below). In practice, this requires reasonably
precise timestamps.

V2.2: Verify that TTL <= (Now − Time).

Trigger Service

B=[Time, TTL, Counter, Trigger Scope,

DTAP
Action Service

REST API Call(Trigger Token)

REST API Call(B, Action Token)Trigger Data, User ID, Signature]

Fig. 6: Rule execution in DTAP: Upon a trigger activation, the
trigger service contacts DTAP-Cloud with a trigger blob (B).
DTAP-Cloud transmits this blob and the rule-specific action
token to the action service. The trigger blob contains informa-
tion the action service needs to verify that the corresponding
trigger occurred for the specified user.

V2.3: Check that the trigger scope (function name) inside the
blob matches what the action service was given during
the setup phase.

V2.4: Verify that the UserID in the trigger blob is the same that
was given to the action service during rule setup.

V3: Verify that the HTTP function being called at runtime is the
same as the function name given by the trusted client to the
action service during the setup phase.

V4: Finally, verify that the function parameters match those that
the trusted client gave the action service during the setup
phase.

If all verification checks succeed, then the action service
proceeds normally and executes the send_email function.
We note that the rule execution process does not depend on
the DTAP-Client, as rule-specific tokens are already uploaded
to the DTAP-Cloud.

A. Security Properties of DTAP

The above design ensures that the DTAP-Cloud can only
execute user rules whenever a trigger occurs, even if it is
compromised. Here, we explain in more detail how the various
components of our OAuth protocol additions and decentralized
design provide this guarantee.

Action Function Misuse Prevention. An untrusted or com-
promised trigger-action platform can invoke action functions at
will, even in the absence of any triggers. Furthermore, based
on our case study results, it could invoke a wide variety
of functions given the overprivilege. DTAP prevents all of
these problems. First, although XTokens are coarse-grained,
they are never transmitted to the untrusted cloud service.
Only rule-specific tokens that can execute a single function
with specific parameters are transmitted to the DTAP-Cloud.
Furthermore, through the signed trigger blob, the DTAP-Cloud
can successfully execute an action function only if it can prove
that a trigger occurred within some reasonable amount of time
in the past.

Trigger Misuse Prevention. DTAP-Cloud could try to misuse
the trigger blob and attempt replay attacks. The time stamp
([V2.1]: Time > PrevT ime) and time-to-live value ([V2.2]:
TTL <= (Now − Time)) ensures trigger blob freshness.

10

However, an attacker could in theory conduct replay attacks
within the TTL period. In practice, this TTL is in the order of
a few hundred milliseconds, and thus limits the ability of the
attacker drastically. Additionally, the forward rolling timestamps
also serve to further limit a replay attack ([V2.1]). The attacker
could also try to use a trigger blob from another trigger service,
the trigger blob of a different trigger function on the same
service, or a trigger blob of a different user with the same rule.
However, while setting up the rule, the trusted DTAP-Client
instructs the action service to associate the name of the trigger
scope (function name), and the user ID with the action token.
Furthermore, the signed trigger blob contains this trigger scope
([V2.3]), and the user ID ([V2.4]). Therefore, DTAP-Cloud can
only use a given trigger blob for a specific action function and
for a specific user. In other words, the DTAP-Cloud can only
execute the user’s rule.

Trigger Data Integrity. The untrusted DTAP-Cloud may
attempt to modify the data it receives from the triggering
service before delivering it to the action service. An example
of this would be a rule that saves new images from an Instagram
channel to a Dropbox account. An attacker may replace the
image with malware before uploading the file to Dropbox.
DTAP protects against such an attack by requiring the trigger
service to sign the fields of the trigger blob with its private
key. When receiving the trigger blob, the action service verifies
the signature using the public key that was associated with the
action token during rule setup ([V2]).

Recipe Deletion. A user can delete rules with the help of DTAP-
Client, that will issue a rule deletion HTTP API call to the
online services involved in a specific rule. The online services
will then invalidate the rule-specific tokens. A malicious DTAP-
Cloud can retain the rule description, but it won’t be able
to execute any trigger or action functions because the online
services will automatically refuse the HTTP calls as the tokens
no longer exist.

No Single Point of Failure. Although the XToken is coarse-
grained, it is never transmitted to the untrusted cloud service.
The attacker has to target and compromise individual devices
to obtain XTokens. Therefore, the cloud platform is no longer
a single point of failure for the whole system. In §VII, we
will discuss how DTAP can handle cases where the user has
multiple trusted devices or if their device gets compromised.

B. End-User Properties of DTAP

From an end-user perspective, DTAP retains the concept
of the one-time operation of users connecting channels to their
accounts. However, as users have to use a client app, it limits
their mobility (see §VII for options to increase mobility). DTAP
does not add any additional OAuth prompts—it leverages User-
Driven Access Control to automatically obtain the rule-specific
tokens.

As we discussed in §III, online services in general neither
provide users with fine-grained control over OAuth permis-
sions, nor provide good descriptions of the permissions being
requested. However, DTAP enables fine-grained control and
good descriptiveness. When a DTAP-Client requests the user’s
permission to obtain an XToken, it directly lists the set of
online service functions for which the XToken can be used
to gain access. Furthermore, the online service can provide

an option for users to select the set of functions they wish
to include in the XToken—DTAP-Client will not be able to
obtain rule-specific tokens for any functions not in that set.

C. Expressivity of DTAP

For services that do not natively support a callback interface
for a specific triggering condition, the trigger-action platform
must poll the service and check the triggering condition itself.
For example, a weather channel might only offer an API that
returns the current temperature. To support a trigger that fires if
the temperature goes above 80 degrees, a trigger-action platform
would poll the weather service and compute the predicate
currTemp > 80. However, the DTAP-Cloud might simply
ignore the result of the comparison, and invoke the action
service repeatedly. The verification on the action end will
succeed since DTAP-Cloud will obtain a valid signed trigger
blob when it polls the trigger service.

DTAP handles such situations by allowing the client to
associate a predicate with the action token. This predicate is
expressed over fields of the trigger data part of the signed
trigger blob. The DTAP-Client simply maps the condition the
user sets up while creating the rule to a predicate and then
instructs the action service to associate the predicate with the
resulting rule-specific token. At runtime, the action service
performs the additional step of verifying that the predicate is
true.

Encoding such stateless predicates handles a significant
fraction of the kinds of conditions that trigger-action platforms
supports. We studied the triggers, actions, and online service
APIs for 24 of the top channels in the IFTTT platform and
did not find any predicates that required storing state. We also
studied the Zapier channel creation process but did not find
any resources for channels to keep state [18]. Moreover, all
Zapier predicates only involve simple boolean operators. Our
prototype fully supports expressing such rules.

D. Deployability of DTAP

We stress that our intent is to provide a starting point
for the community to improve the security of trigger-action
platforms from the ground up. Therefore, DTAP is a clean
slate design. However, there are several components of DTAP
that are readily deployable, and there are a few components
that can be deployed with some effort. Below, we structure our
discussion around the software components that DTAP design
impacts.

• OAuth 2.0 Protocol: DTAP additions to OAuth are fully
backward compatible on the wire. In order to provide
Decentralized Action Integrity, no changes are required to
existing software implementing the protocol. We conclude
that the protocol additions are readily deployable.

• Online Services: DTAP does require changes to the
online services that provide trigger and action APIs.
Specifically, the online services need to understand rule-
specific tokens and XTokens. As we will discuss in §VI,
we have implemented a library that online services can
use to gain the benefits of Decentralized Action Integrity.
Developers would have to make one-line additions for each
API call they want to protect using rule-specific tokens.
Furthermore, to easen this transition process, in §VII, we

11

outline a proxy-based approach to incrementally introduce
DTAP support in online services.

• Trigger-Action Platforms: DTAP does not require
changes to the cloud component of the trigger-action
platforms. We prototyped a version of DTAP that uses
the existing Zapier trigger-action platform through its
developer platform. We created custom channels that
connect to prototype online services with DTAP support.
We find that the existing cloud portion of the Zapier
successfully transfers the trigger blobs from the trigger
channel to the action channel and eventually to the action
online service where the blob is subsequently verified.
We conclude that trigger-action platforms can retain their
existing rule execution and channel creation infrastructure
while gaining the benefits of DTAP.

VI. IMPLEMENTATION & EVALUATION

We implemented DTAP-Client on the Android platform.
For additional client-side security, DTAP-Client will use a
hardware-backed keystore, when available, to generate a key
that we use to encrypt XTokens before storing them on the
filesystem. Such keystores have been present in iOS devices
since 2013 [19] and have been supported in Android devices
since version 6.0 [34].

We built a Python library that online service developers can
use to add DTAP functionality. The library provides a simple
annotation (i.e., Python decorator) that developers can place
above sensitive HTTP API methods that require rule-specific
scoping. The annotation automatically invokes the verification
procedure (see §V). Using the Python library, we implemented
the DTAP-Cloud, and two online services modeled after existing
IFTTT channels: (1) an Amazon Alexa inspired ToDo list,
(2) an email service. For our benchmark measurements, we
implemented a skeleton version of IFTTT as our baseline. The
skeleton version uses standard OAuth tokens.

A. Microbenchmarks

We first quantified micro-performance factors of DTAP.
We created the following rule: “IF new item == ‘buy
soap’ is added to MyToDo List THEN send email(new item).”
That is, if a new ToDo item with contents “buy soap” is added
to the list, then send an email. This rule is representative of
the kinds of rules that users can create on a typical trigger-
action platform such as IFTTT. It contains all the elements
of typical rules: a condition on data coming from the trigger
service, and transfer of trigger service data to an action service
function. We deployed DTAP locally, created the example rule,
and then measured storage overhead, transmission overhead,
and developer effort.5 We found that using DTAP imposes
negligible overhead: Each rule requires an additional 3.5KB
in terms of storage, and an additional 7.5KB of transmission
per execution. Online service developers using our prototype
library only need to add a single line of code per HTTP API
function—this is the same as that required by the popular
oauthlib library for Python. We elaborate on the results below.

5For microbenchmarks, deployment location does not affect the quantities
under study.

66

68

70

72

74

76

1 2 4 6 8 10

Tr
an

sm
is

si
on

 S
iz

e
(K

B
)

Number of Parameters

DTAP
IFTTT

Fig. 7: Average total transmission size of baseline system and
DTAP for 1− 10 parameters for 5 experiments. Although there
is a linear increasing trend in both systems, the difference
among the two remains negligible.

1) Storage Overhead: Using DTAP requires online services
to store additional state: An online service needs to store an
XToken for each trusted client that allows the client to create
fine-grained tokens for individual rules. The online service
also needs to store DTAP fine-grained tokens for each rule.
These tokens include additional fields (e.g., time, TTL), so they
impose storage overhead on the online service. We computed
the required storage for the baseline IFTTT system, and for
DTAP. Our results show that each DTAP rule creates a 3.5KB
overhead in addition to the 0.8KB required to store the XToken,
compared to the 0.8KB storage cost for the baseline trigger-
action platform. This extra token storage cost is negligible
given the low price of storage and quantity of other user data
that these systems collect.

2) Transmission Overhead: Executing a rule on DTAP
requires transmitting more data over the network. This overhead
is the result of additional data in the trigger blob (Figure 6)
including time, TTL, and sign. To evaluate the transmission
overhead, we computed the transmission size of rule execution
in the baseline case and compared it to the same quantity in
the DTAP case. We varied the number of function parameters
passed (1− 10) and present the average result of five experi-
ments. The number of function parameters matters because the
rule-specific token information encodes data about the specific
function being executed. We used Wireshark [17] to measure the
flow sizes associated with ports assigned to online services and
the DTAP-Cloud. Figure 7 presents this overhead for different
number of function parameters for the two systems. In our
experiments, DTAP created 6 − 11% overhead. Even when
using 10 parameters the transmission overhead does not exceed
7.5KB. The variance in the results are due to normal network
variances such as packet retransmission.

3) Developer Effort: We developed DTAP as a library for
trigger and action services to make it easy for online service
developers to transition to the DTAP model. Developers must
only add a single additional line of code per function to protect
it with DTAP verifications. When compared to existing OAuth

12

0

0.05

0.1

0.15

0.2

IFTTT
DTAP

IFTTT
DTAP

IFTTT
DTAP

IFTTT
DTAP

IFTTT
DTAP

IFTTT
DTAP

Ti
m

e
(s

)

Number of Parameters

Network Latency
Trigger Service Latency
Action Service Latency

1086421

Fig. 8: DTAP adds less than 15ms of verification latency to
rule execution compared to IFTTT.

libraries, such as the popular oauthlib [13], this is the same
amount of effort—developers using oauthlib must also place a
single annotation above HTTP API methods to create scopes.

B. Macrobenchmarks

We measured end-to-end latency and throughput of rule
execution. We hosted the DTAP-Cloud and two online services
on separate Amazon t2.micro EC2 instances. Each instance
was configured with one 64-bit Intel Xeon Family vCPU@2.5
GHz, 1GB memory, 8GB SSD storage, Ubuntu 14.04 with
Apache2, and MySQL Server 5.5. Our results show a modest
15ms latency increase, and 2.5% throughput drop in the online
service when compared to the baseline (online service with
no DTAP protections). This does not represent an inhibiting
overhead for an online service especially when considering the
effect of network latency and the lack of real-time requirements
in these systems. We used the same ToDo list rule for our tests.

1) End-to-End Latency: We measured the time between
the trigger service being activated due to an item being added
to our ToDo list example rule, and the time the action service
issues a send_email call. This time includes network latency,
the time to generate a signed trigger blob, and the time to verify
the trigger blob and the action token, in the case of DTAP.
Our baseline case is a bare trigger-action system, and it only
includes network latency, and time to execute the trigger and
action functions without any DTAP verification. We varied the
number of function parameters on the action service between 1
and 10. Figure 8 presents the results of these experiments. Our
results show that excluding the network latency, the maximum
verification overhead is less than 15ms. For typical rules, that
send emails, SMSs, or invoke actions on physical devices over
a network, we consider this additional latency to be acceptable.

2) Throughput: We measure throughput as the number of
rules executed per second, under a load of 2000 concurrent
HTTP requests. We computed this concurrency level by
examining the number of times the most popular IFTTT
channel was used in rules (IF Notification channel was used in
1, 514, 188 rules in our dataset). As per IFTTT’s documentation,
this channel will contact an online service once every 15
minutes [11], meaning that an online service would receive

DTAP IFTTT
Avg SD Avg SD

Throughput (req/sec) 94.03 8.48 96.46 5.74

TABLE III: DTAP reduces throughput by 2.5% compared
to IFTTT. We used ApacheBench to send 10, 000 trigger
activations with up to 2000 concurrent activations.

approximately 1, 682 requests/second. Therefore, we chose
2000 as an upper-bound for the number of concurrent requests
a service would have to process. We used ApacheBench [3]
to conduct throughput testing of DTAP and IFTTT by sending
10, 000 trigger activations with upto 2000 concurrent activations
at a time. Table III presents our results, averaged over three
separate runs. We find that DTAP decreases throughput by only
2.5%.

VII. DISCUSSION AND LIMITATIONS

Transitioning to DTAP. We discussed deployment options and
compatibility issues of DTAP in §V-D. Although we facilitate
migration to DTAP through development of an online library,
direct transition from legacy system to DTAP might be still
hard to achieve. One way to further ease this transition is the
incremental addition of DTAP support to online services using
a trusted proxy. Specifically, for each online service’s REST
API (set of function calls), we envision a trusted proxy running
in front of it that intercepts OAuth and API calls, translates
them from DTAP requests into regular requests, and vice-versa.
Although this trusted proxy would be overprivileged, it does
not increase the risk posed to the online service—an attack on
the proxy is equivalent to an attack on the online service. As we
stated in our threat model, if an online service is compromised,
an attacker can achieve its goals independently of any specific
trigger-action platform. The trusted proxy merely serves as
an intermediate solution until the actual online service API is
updated with DTAP support.

DTAP-Client use. In existing trigger-action platforms, users
can login to the IFTTT website and create rules from any
client device. However, DTAP requires users to create rules
via a client device they trust (e.g., their smartphone), which
stores XTokens in a private file system. Although our current
client prototype does not support transferring client state from
one device to another, building such functionality is fairly
straightforward. One possible solution is to provide an export
function to save the current client state to a disk image, and
then provide an import function to load that client state into
another device. If a client device is lost, then user rules continue
to execute normally. However, the user will have to download
the client again on another device, and go through the channel
connection phase to re-establish the XTokens to create future
rules.

A prototype limitation is that DTAP only allows a user to
use a single trusted client at a time. The protocol itself does
not preclude multiple clients, with users switching between
devices running the trusted clients based on convenience (e.g.,
a user at home may want to use a desktop to create rules, and
the same user at the workplace may prefer to use a phone).
Currently, our prototype does not include state maintenance
between different clients of a single user. To support such a
scenario, we envision the trusted client providing an option to
back up the current state (XTokens, recipes, etc.) to a user’s

13

private cloud storage (e.g., Google Drive, Dropbox, etc.). The
trusted client can automatically keep this private cloud state
updated, and whenever the user logs in to a trusted client
running on a different device, the client can download the state
information securely.

Client-Device Loss. If a client device is lost, existing proce-
dures to erase device data take care of removing OAuth tokens.
Also, an “erasure-app” can be built to automatically contact
online services and invalidate tokens with co-operation from
our modified OAuth helper library. We leave implementing this
to future work.

XToken Security. The XToken is a high-powered credential.
Although DTAP reduces its vulnerability to leakage by design,
a malicious client can still leak this credential. Such leakage
however, only affects the single user and does not pose a
risk for other users of the DTAP platform. As discussed,
our implementation encrypts XTokens at rest using hardware-
backed keystores when available. We envision further security
by only performing XToken-related operations inside trusted
execution environments (e.g., Intel SGX on desktops, or ARM
TrustZone on phones). We leave implementing this to future
work.

Data confidentiality and Privacy. Our design currently re-
duces the privilege of the DTAP-Cloud—it only gains access
to APIs and hence data it needs to run the user’s rules. This
is an improvement over the current state-of-the-art where we
have shown through our analysis that an attacker can gain
wide access to data and devices. However, even with our
improvements, an attacker can still gain access to sensitive
information simply by passively recording rule execution. A
potential way to provide data confidentiality in this case is
to encrypt data passing through the DTAP-Cloud. However,
this can result in a loss of expressivity. Currently, trigger-
action platforms can evaluate predicates on trigger data (see our
weather data example in §V-C). Although the action service can
solely evaluate these predicates, it does increase computational
burden, thus defeating the purpose of trigger-action platforms.
As our analysis shows, the predicates are stateless and involve
simple comparison operators. Therefore, a potential solution
is to leverage advancements in use-case-specific homomorphic
encryption for secure integer comparison, rule matching, etc.,
to allow the least-privilege DTAP-Cloud to evaluate predicates
on encrypted data [35], [43]. DTAP design also enables action
services to collect data on triggers by recording the trigger
scope and trigger certificate during rule execution. While the
trigger service and the trusted client can obfuscate the trigger
scope, a current limitation is that the action service can still
profile obfuscated trigger names.

Self-Signed Certificates. Our current implementation reuses
the HTTPS certificates of the online services. In order to avoid
problems associated with key reuse, another implementation is
to use self-signed certificates. A trigger service can generate a
self-signed certificate and send that along with the XToken to
the trusted client. The client can then send that certificate to the
action service that associates it with the rest of the action token
parameters. When a trigger occurs, the trigger service will
use a private key corresponding to that self-signed certificate’s
public key to sign the trigger blob. At verification time, the
action service uses the public key in the self-signed certificate
to verify the blob. Such an implementation also avoids the

privacy issues of revealing the identity of the trigger service to
the action service, as the common name of the trigger service
in a self-signed certificate can be obfuscated.

Formal Verification. The DTAP protocol has not been formally
verified yet. Our future work plan includes using automated
cryptographic protocol verification tools such as ProVerif [14]
to verify the security guarantees.

VIII. RELATED WORK

Trigger-Action Platform Studies. A few studies have inves-
tigated IFTTT in recent years, although in different contexts.
Ur et al. [46] crawled the site in 2015, collecting 224,590
IFTTT programs shared by over 100,000 different users. Their
study shows many interesting statistics including the number of
different trigger and action channels used by IFTTT users. In
contrast, our work investigates the long-term security risks that
such platforms pose, and introduces the notion of Decentralized
Action Integrity to counter these risks.

Surbatovich et al. analyzed user-created rules (recipes in
IFTTT terminology) in the IFTTT platform using an information
flow control approach [45]. Their focus was to determine the
risks that users face due to errors either in rule creation, or due
to inadvertent chaining of rules. In contrast, our work focuses
on discovering and addressing the security design deficiencies
of platforms like IFTTT. Addressing programming errors is an
orthogonal research direction—the TrigGen tool, for example,
aims to avoid errors caused by users incorrectly creating rules
that have insufficient triggering conditions [37]. Our work is
not focused on rule correctness.

Poirot finds vulnerabilities that occur due to abstraction
discrepancies [33]. The authors apply Poirot to IFTTT and find
a CSRF attack. In contrast, we assume that the trigger-action
platform is compromised, and design a decentralized platform
that ensures that an attacker cannot arbitrarily invoke actions.
Instead, an attacker can only invoke actions if they can prove
trigger occurrence.

Decentralized Trust Management. Blaze, Feigenbaum, and
Lacy discussed PolicyMaker [20], an approach that exhibits
locality of control in managing trust relationships. The DTAP
protocol supports a similar decentralized verification of trigger-
action rules. Furthermore, our notion of an OAuth token
associated with information that constrains its use, and the
notion of signed trigger blobs is inspired by the PolicyMaker
approach of binding keys to predicates that determine the
actions for which those keys are trusted.

Kerberos TGT. The notion of XTokens generating recipe-
specific tokens bears similarity to Kerberos single sign-on
protocol where “ticket granting tickets” are used to acquire
“service tickets” to prove the user’s identity to other services
without prompting the user. Kerberos protocol, however, relies
on a trusted server to hold TGT tokens and is typically used
in scenarios where the user, trusted server, and connecting
services are all within one umbrella corporation.

OAuth Security Analyses. Since the Open standard for
Authorization (OAuth) debuted in 2007 [31], a number of
studies discovered flaws in the protocol and the way the protocol
was implemented in web sites [25], [12], [27], [28], [40], [41],
[44], [48], [49], [50]. Nonetheless, the OAuth protocol is still

14

popular and it is now commonly used in mobile applications
as well. Since the protocol was initially designed for web
sites, some of the important details of the protocol was up to
developers’ interpretation when adapting OAuth to a mobile
application. Recent work scrutinized implementations of OAuth
in many Android mobile applications [21], [47], [42], showing
that the majority of deployments were vulnerable [21], [47].

Our work is an addition to this growing list of work
discovering vulnerabilities associated with deploying the OAuth
protocol. However, our purpose in studying OAuth issues
for trigger-action platforms is to determine how an incorrect
deployment affects the security properties of trigger-action
platforms. As discussed, our conclusion is similar to that of
prior work—if the OAuth tokens are leaked, attackers are free
to use them at will. In the context of trigger-action platforms,
this means that tokens guarding access to digital and physical
resources for millions of users are at risk of being stolen and
misused.

Fett et al. conducted a formal security analysis of the
OAuth 2.0 standard, and in the process, discovered new
vulnerabilities [26]. They also propose fixes and prove the
security of the protocol in an expressive web model. These
contributions are orthogonal to ours and our work will benefit
from their fixes to the OAuth protocol.

Cloud Platform Compromise. Beside vulnerabilities in OAuth
implementation, other attacks on trigger-action platforms may
also expose user data to attackers. Massive data leaks are com-
monplace. Equifax [2], Target [16], and US voters database [1]
are some of the most recent examples of such high profile
leaks. Our work introduces the first decentralized trigger-action
platform design with the security property of only allowing
the attacker who compromises the platform to execute specific
user rules.

IoT Security. Fernandes et al. analyzed the security of Smart-
Things and conducted attacks using stolen OAuth tokens [23].
This underscores the need to secure IoT platforms that use
OAuth tokens. We also introduce extensions to the OAuth
protocol to support rule-specific tokens. Fernandes et al.
also introduce flow tracking properties for IoT apps using
FlowFence [24] focusing on confidentiality in a centralized
setting. Our work focuses on action integrity in a decentralized
setting.

IX. CONCLUSION

Trigger-Action platforms stitch together various online
services to achieve useful automation. These platforms work by
gaining privilege to access user data and devices in the form
of OAuth tokens. However, the logically monolithic designs
of current trigger-action platforms lead to a long-range large-
scale security risk—if the platform is compromised, attackers
can leak OAuth tokens for all the users of the platform, and
then misuse those tokens to cause damage. Furthermore, with
a case study of the IFTTT platform, we discovered that the
OAuth tokens are overprivileged, allowing an attacker to cause
even further damage. To systematically tackle this security
risk, we introduced Decentralized Action Integrity, a security
mechanism that provides the guarantee that even if the OAuth
tokens of a trigger-action platform are stolen, the attacker
cannot misuse the tokens. Instead, attackers can only invoke

action services if they can prove that the triggering condition
was true for a given rule. We designed and implemented
Decentralized Trigger-Action Platform (DTAP), the first trigger-
action platform that supports Decentralized Action Integrity.
DTAP takes a decentralized approach to trigger-action platform
design instead of the prevailing logically monolithic design
that is currently in use. Our design introduces the notion of an
XToken coupled with rule-specific tokens and a cryptographic
extension to the OAuth 2.0 protocol. We implemented this
design as a Python library that can be easily integrated into
existing services (one-line addition). Performance tests indicate
modest overhead (15ms latency increase; 2.5% throughput
drop).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd, Limin
Jia, for their insightful feedback on our work. We also thank
Tadayoshi Kohno for providing valuable feedback. This material
is based in part upon work supported by the National Science
Foundation under Grant No. 1646392 and 1740897, by the UW
Tech Policy Lab, and by the MacArthur Foundation.

REFERENCES

[1] 191 Million US Voter Registration Records Leaked In Mys-
tery Database, http://www.forbes.com/sites/thomasbrewster/2015/12/28/
us-voter-database-leak/.

[2] A Brief History of Equifax Security Fails, https://www.forbes.
com/sites/thomasbrewster/2017/09/08/equifax-data-breach-history/
#3829d1f4677c.

[3] ApacheBench, http://httpd.apache.org/docs/2.4/programs/ab.html.
[4] Apiant, https://apiant.com/.
[5] Automate Processes + Tasks— Microsoft Flow, https://flow.microsoft.

com/en-us/.
[6] automate.io, https://automate.io/ifttt-alternative.
[7] CloudWork, https://cloudwork.com/.
[8] Data Breaches Exposed 707 Million Records

During 2015, http://news.softpedia.com/news/
data-breaches-exposed-707-million-records-during-2015-501116.
shtml.

[9] Hack Brief: 4-Year-Old Dropbox Hack Exposed 68
Million Peoples Data, https://www.wired.com/2016/08/
hack-brief-four-year-old-dropbox-hack-exposed-68-million-peoples-data/.

[10] If This Then That, https://ifttt.com/.
[11] IFTTT- Learn More, https://ifttt.com/wtf.
[12] OAuth Security Advisory: 2009.1, https://oauth.net/advisories/2009-1/.
[13] oauthlib 2.0.0, https://pypi.python.org/pypi/oauthlib.
[14] ProVerif, http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.
[15] Stringify, https://www.stringify.com/.
[16] Target Expects 148 Million Loss from Data Breach, http://time.com/

3086359/target-data-breach-loss/.
[17] Wireshark, https://www.wireshark.org/.
[18] Zapier, https://zapier.com/.
[19] Apple Inc., “iOS Security - iOS 9.3 or later,” 2016.
[20] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,”

in Proceedings of the 1996 IEEE Symposium on Security and Privacy, ser.
SP ’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 164–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=525080.884248

[21] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “Oauth
demystified for mobile application developers,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 892–903.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660323

15

[22] G. Cooking, If your smoke alarm detects an emergency, then turn off
your oven, http://tinyurl.com/gv4q3hq.

[23] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging
Smart Home Applications,” in IEEE Symposium on Security and Privacy
(S&P), 2016.

[24] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks,” in Proceedings of the 25th USENIX Security
Symposium, 2016.

[25] D. Fett, R. Küsters, and G. Schmitz, “A Comprehensive Formal Security
Analysis of OAuth 2.0,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16,
2016.

[26] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security
analysis of oauth 2.0,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 1204–1215. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978385

[27] E. Homakov, How we hacked Facebook with OAuth2
and Chrome bugs, http://homakov.blogspot.ca/2013/02/
hacking-facebook-with-oauth2-and-chrome.html.

[28] ——, OAuth1, OAuth2, OAuth...?, http://homakov.blogspot.ca/2013/03/
oauth1-oauth2-oauth.html.

[29] IFTTT, IFTTT Platform Size Metrics, https://platform.ifttt.com/pricing.
[30] IFTTT, https://ifttt.com/.
[31] Internet Engineering Task Force, RFC5849 - The OAuth 1.0 Protocol,

2010.
[32] ——, RFC6749 - The OAuth 2.0 Authorization Framework, 2012.
[33] E. Kang, A. Milicevic, and D. Jackson, “Multi-representational security

analysis,” in Proceedings of the 2016 ACM International Symposium on
the Foundations of Software Engineering, ser. FSE ’16, 2016.

[34] Hardware-backed Keystore, https://source.android.com/security/
keystore/.

[35] R. P. Kim Laine, Hao Chen, “Simple Encrypted Arithmetic
Library - SEAL (v2.1),” Tech. Rep., September 2016. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
simple-encrypted-arithmetic-library-seal-v2-1/

[36] M. Mimoso, 1 million Gmail users impacted by
Google Docs phishing attack, https://threatpost.com/
1-million-gmail-users-impacted-by-google-docs-phishing-attack/
125436/.

[37] C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-based
smart homes,” in PLAS 2016: ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, Vienna, Austria, October 24, 2016.

[38] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting

in modern operating systems,” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, ser. SP ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 224–238. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.24

[39] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments
in system design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp.
277–288, Nov. 1984. [Online]. Available: http://doi.acm.org/10.1145/
357401.357402

[40] B. Security, How I Hacked Any Facebook Account...again!, http://www.
breaksec.com/?p=5753.

[41] ——, How I Hacked Facebook OAuth to Get Full Permission on
Any Facebook Account (Without App “Allow” Interaction), http://www.
breaksec.com/?p=5734.

[42] M. Shehab and F. Mohsen, “Towards Enhancing the Security of OAuth
Implementations in Smart Phones,” in International Conference on
Mobile Services, 2014.

[43] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 213–226.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2787502

[44] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
An empirical analysis of OAuth SSO systems,” in CCS, 2012.

[45] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia,
“Some recipes can do more than spoil your appetite: Analyzing the
security and privacy risks of ifttt recipes,” in Proceedings of the
26th International Conference on World Wide Web, ser. WWW ’17.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2017, pp. 1501–1510. [Online].
Available: https://doi.org/10.1145/3038912.3052709

[46] B. Ur, M. P. Y. Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman, “Trigger-Action Programming in the
Wild: An Analysis of 200,000 IFTTT Recipes,” in CHI, 2016.

[47] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu, “Vulner-
ability Assessment of OAuth Implementations in Android Applications,”
in ACSAC, 2015.

[48] R. Wang, S. Chen, and X. Wang, “Signing Me onto Your Accounts
through Facebook and Google: A Traffic-Guided Security Study of
Commercially Deployed Single-Sign-On Web Services,” in IEEE
Symposium on Security and Privacy (S&P), 2012.

[49] R. Wang, X. Wang, L. Xing, and S. Chen, “Unauthorized Origin Crossing
on Mobile Platforms: Threats and Mitigation,” in CCS, 2013.

[50] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating SDKs: Uncovering assumptions underlying secure authenti-
cation and authorization,” in USENIX Security, 2014.

[51] R. Yang, W. C. Lau, and T. Liu, “Signing into one billion mobile app
accounts effortlessly with oauth2.0,” in BlackHat, 2016.

16

