Decentralized Action Integrity
for Trigger-Action 10T Platforms

Earlence Fernandes Amir Rahmati

University of Washington
earlence @cs.washington.edu
amir@rahmati.com

Abstract—Trigger-Action platforms are web-based systems
that enable users to create automation rules by stitching together
online services representing digital and physical resources using
OAuth tokens. Unfortunately, these platforms introduce a long-
range large-scale security risk: If they are compromised, an
attacker can misuse the OAuth tokens belonging to a large
number of users to arbitrarily manipulate their devices and data.
We introduce Decentralized Action Integrity, a security principle
that prevents an untrusted trigger-action platform from misusing
compromised OAuth tokens in ways that are inconsistent with any
given user’s set of trigger-action rules. We present the design and
evaluation of Decentralized Trigger-Action Platform (DTAP), a
trigger-action platform that implements this principle by over-
coming practical challenges. DTAP splits currently monolithic
platform designs into an untrusted cloud service, and a set of user
clients (each user only trusts their client). Our design introduces
the concept of Transfer Tokens (XTokens) to practically use fine-
grained rule-specific tokens without increasing the number of
OAuth permission prompts compared to current platforms. Our
evaluation indicates that DTAP poses negligible overhead: it adds
less than 15ms of latency to rule execution time, and reduces
throughput by 2.5%.

I. INTRODUCTION

Trigger-Action platforms are a class of web-based systems
that stitch together several online services to provide users
the ability to set up automation rules. These platforms allow
users to setup rules like, “If I post a picture to Instagram,
save the picture to my Dropbox account.” The ease of use and
functionality of such platforms have made them increasingly
popular [46], and several of them (e.g., If-This-Then-That
(IFTTT) [30], Zapier [18], and Microsoft Flow [5]) are on
the rise. Furthermore, with the rise in popularity of connected
physical devices like smart locks and ovens, we observe that
many trigger-action platforms have started adding automation
support for physical devices, making it possible for users to
set up rules like: “If there is a smoke alarm, then turn off my
oven” [22]. These platforms have privileged access to a user’s
online services and physical devices; thus they are an attractive
target for attackers. If they are compromised, attackers can

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA

ISBN 1-1891562-49-5

http://dx.doi.org/10.14722/ndss.2018.23119

www.ndss-symposium.org

Samsung Research America
Stony Brook University

Atul Prakash
University of Michigan
aprakash@umich.edu

Jaeyeon Jung
Samsung
jae.jung @samsung.com

arbitrarily manipulate data and devices belonging to a large
number of users to cause damage.

To better characterize this risk, we perform a brief survey
of seven trigger-action platforms including an in-depth case
study of IFTTT, a widely used platform with over 11 million
users [29]. We find that trigger-action platforms support a
wide variety of business and IoT use-cases using a logically
monolithic design. This implies that if attackers compromise
the platform, they will be able to leak OAuth tokens for all
users. Indeed, compromise of web systems are commonplace.
Prominent examples include Equifax [2], Target [16], US
voters database [1], and Dropbox [9]. OAuth-specific attacks
are on the rise as well. Yang et al. [51] showed that 41%
of top 600 Android mobile applications, which use OAuth,
are susceptible to remote hijacking, and the recent Google
Docs OAuth-based phishing attack compromised one million
users [36]. We observe that cloud services, even well-designed
and tested ones, are not immune to persistent and sophisticated
threats.

Furthermore, through API testing techniques, we find that
in the case of IFTTT, the OAuth tokens it obtains for online
services are overprivileged. For example, we find that it is
possible to flash the firmware of a Particle chip, delete Google
drive files, and turn off video surveillance in a MyFox smart
home using IFTTT OAuth tokens. §III-B provides a more
comprehensive analysis of these issues. We note that this
risk of overprivilege is not isolated to IFTTT, but affects
trigger-action platforms in general that use OAuth—incorrect
OAuth scoping can lead to overprivilege—either trigger-action
platforms may request broad scopes or the online services may
only offer coarse-grained scopes. We conclude that beyond
attackers misusing OAuth tokens of a compromised trigger-
action platform, the overprivilege in the OAuth tokens extends
the abilities of the attacker to invoke API calls that are outside
the abilities of the trigger-action platform itself.

We show that it is possible to avoid this risk without losing
the benefits of a cloud-based trigger-action platform. To that
end, we introduce Decentralized Action Integrity. This security
principle ensures that an attacker who controls a compromised
trigger-action platform: (1) can only invoke actions and triggers
needed for the rules that users have created; (2) can invoke
actions only if it can prove to an action service that the
corresponding trigger occurred in the past within a reasonable
amount of time; and (3) cannot tamper with any trigger data
passing through it undetected. To enable these security benefits,
Decentralized Action Integrity makes use of four elements:

(1) Rule-specific tokens permit the bearer to execute a specific
API call of an online service; (2) Timely and verifiable triggers
ensure that the bearer of an OAuth token can invoke the action
portion of a user-created rule only when it can prove that the
triggering portion of the rule occurred within a reasonable
amount of time in the past; (3) Data integrity ensures that an
attacker cannot modify trigger data as it passes through the
platform; and (4) Tokens are decentralized. A compromise of
the platform does not leak tokens of all the users.

Decentralized Action Integrity is inspired by the end-to-end
argument for system design by Saltzer, Reed, and Clark [39].
Rather than depending on the cloud service of a trigger-action
platform, which can be compromised, to provide a proof that
tokens were not misused, the principle places verification
checks for misuse of OAuth tokens at the endpoints (i.e.,
online services) of the system. Additionally, our work draws
on the notions of Decentralized Trust Management [20], and
the Kerberos Ticket-Granting Ticket system (§VIII illustrates
these relationships in more detail).

We design, implement, and evaluate Decentralized Trigger-
Action Platform (DTAP), the first trigger-action platform sup-
porting Decentralized Action Integrity. Our design breaks down
the currently monolithic structure of trigger-action platforms
into an untrusted cloud service that executes user rules at large
scale and a set of trusted client applications, where each user
trusts their own client. While designing DTAP, there are a few
challenges. First, rule-specific tokens can lead to a drastically
increased number of OAuth permission prompts as users would
have to login and approve an OAuth scope request every time
they create a rule. The challenge is to gain the security of rule-
specific tokens but maintain the current trigger-action platform
experience where users approve OAuth requests only once
during a setup phase for each online service. DTAP overcomes
this challenge by using Transfer Tokens (XTokens). A small
trusted client installed on the user’s device uses an XToken to
automatically obtain a rule-specific token, which it transmits
to the cloud service for rule execution. Our implementation
encrypts XTokens at rest using a hardware-backed keystore
when available.

Second, DTAP requires the untrusted cloud service to prove
to the invoked action service that a trigger has occurred within
a reasonable amount of time in the past. As the cloud service
can be compromised, a possible design is to have the trigger
service communicate directly with the action service to verify
the occurrence of a triggering event. However, this introduces
an undesirable dependency between the action and trigger
services. DTAP avoids that by using a lightweight cryptographic
signature-based extension to the OAuth 2.0 protocol.

Our Contributions:

e We introduce Decentralized Action Integrity, a security
principle that prevents an attacker from using stolen OAuth
tokens in ways that are inconsistent with any given user’s
rules. We develop this principle based on a brief survey of
seven trigger-action platforms, and an in-depth case study of
IFTTT. Our analysis indicates that the logically monolithic
designs of current trigger-action platforms coupled with
overprivileged OAuth tokens pose a long-range large-scale
risk to the digital and physical resources of users (§III, §IV).

o We designed and implemented Decentralized Trigger-Action
Platform (DTAP), the first decoupled trigger-action platform
supporting Decentralized Action Integrity, where users do
not have to trust the cloud platform with highly-privileged
access to their online services (§V). DTAP splits the logically
monolithic trigger-action platform design into an untrusted
cloud service that executes rules at scale, and a set of clients
that help users create rules in a secure manner. DTAP is
based on cryptographic extensions to the OAuth protocol
that only allow the cloud service to execute user rules, even
if it is attacker-controlled.

e We evaluate DTAP using various micro- and macro-
benchmarks. Our evaluation shows that performance over-
head is modest (§VI): Each rule requires less than 3.5K B
additional storage space and imposes less than 7.5K B of
transmission overhead per execution. DTAP adds less than
15ms of latency to rule execution time. For rules in trigger-
action platforms, which typically send emails, SMSs, or
invoke actions on physical devices or on online services
over a network, we consider this additional latency to be
acceptable. DTAP reduces throughput by 2.5% for rule
execution.

We have designed Decentralized Trigger-Action Platform
as an extension to the OAuth 2.0 protocol which is used by
all current trigger-action platforms. Additionally, the protocol
extensions do not require changes to the existing infrastructure
of a trigger-action platform that is responsible for executing
rules at large scale. These two aspects of the design indicate its
wide applicability. Furthermore, our implementation provides
a library that enables developers of online services to add a
single line of code to gain the benefits of Decentralized Action
Integrity. Although this represents a change to existing online
services, we believe that DTAP is a valuable first step toward
a clean-slate design of trigger-action platforms with strong
security properties from the ground up.

II. BACKGROUND: TRIGGER-ACTION PROGRAMS AND
PLATFORMS

Trigger-Action platforms support stitching together various
online services APIs such that end-users may write simple
conditional programs. These simple programs often take the
form “IF triggering condition, THEN take a specific action.”
Examples include “IF smoke alarm has fired THEN turn off the
oven,” and “IF NASA posts a new Instagram picture, THEN
post it to my Dropbox.” Table I shows a set of trigger-action
platforms that we surveyed.! Based on our survey, we adopt a
general terminology that describes the four main architectural
components of such platforms:

e Channel: A channel represents part of an online service’s
set of APIs on the trigger-action platform. Users connect
channels to their trigger-action platform accounts—a pro-
cess that involves user authorization. For example, a user
with a Facebook account must authorize the corresponding
Facebook channel to communicate with her Facebook ac-
count. Channels communicate with online services using
REST (Representational State Transfer) APIs operating over

'Our survey process was simple: create an account and create a single Rule,
and then browse through the list of available online services that integrate with
the platform.

Name Purpose # of Channels
IFTTT [30] IoT/Business/Smart Home 500+
Zapier [18] IoT/Business 750+

Microsoft Flow [5] Business 156
Stringify [15] IoT/Smart Home 74
Apiant [4] IoT/Business 15227
automate.io [6] Business 53
CloudWork [7] Business 91

TABLE I: A list of trigger-action platforms, which we briefly
surveyed, indicating their stated application area. Many of these
platforms support integration with physical devices.

HTTP(S). These online services use the popular OAuth
protocol to enforce authorization [31], [32]. Users must
connect several such channels, before they can accomplish
any useful work. Either the trigger-action platform developers
or online service providers can implement channels. In the
latter case, the trigger-action platform exposes a separate
API to channel writers to help them integrate their online
service with the platform. There is generally a one-to-one
correspondence between online services and channels in the
trigger-action platforms.

o Trigger: A channel may provide triggers, which are events
that occur in the associated online service. “A file was
uploaded to a cloud drive” or “smoke alarm is on” are
examples of triggers. These triggers correspond to APIs in
the trigger online service. The online services are REST
(Representational State Transfer) services that use JSON or
XML.

e Action: A channel may also provide actions. An action is
a function (or set of functions) that exists in the API of
the online service. Examples of actions include “turning
on a connected oven” or “sending an SMS.” In this paper,
we collectively refer to a channel’s triggers and actions as
operations.

e Rule: Rules are at the core of the trigger-action user
experience, and they are the core functionality that these
platforms enable. A rule stitches together various channels
to achieve useful automation. A typical rule has two pieces.
The “If” piece represents a trigger or an event that occurs
on an online service. The “Then” piece represents an action
that should be executed on the online service. For example,
“If there is a smoke alarm, then turn off my oven.” This
rule integrates the smoke alarm channel’s ‘““alarm is on”
trigger with the oven channel’s “turn off the oven” action.
Some trigger-action platforms permit a single trigger and a
single action (e.g., IFTTT), some permit multiple triggering
conditions and actions (e.g., Zapier), if-then-else conditions
(e.g., Microsoft Flow), and even mathematical functions
while combining triggering data (e.g., Stringify).

A trigger-action platform takes the form of a cloud service
that executes rules at large scale. For example, IFTTT currently
supports 11 million users, 54 million rules, and 1 billion rule
executions per month [29]. The cloud service provides accounts
where users can create rules using a simple UL All the platforms
we surveyed also provide mobile apps that serve as an interface
to the cloud service. Therefore, a trigger-action platform is
technically a combination of a cloud service and a mobile app.
For brevity, we refer to the cloud service of a platform as the
trigger-action platform, unless stated otherwise.

GE Oven

August Lock
Service APIs

Service

GE Oven Channel

Oven Set to Sabbath
Turned On Mode
Oven
Turned Off Turn Off Oven

August Lock Channel

Lock Lock
Locked Unlocked

\ Rule
]
Lock Turn Off
Locked Oven

Fig. 1: Overview of trigger-action platform architecture in the
context of a rule. Online services have a channel inside the
platform. These channels gain access to online service APIs
by acquiring an OAuth token during the channel connection
step. A Rule combines a trigger and an action.

All of the platforms we surveyed use OAuth as the primary
integration mechanism—this is expected as most of the online
services today support OAuth based access for third parties.
Our focus is on ensuring that a user’s online services (and
hence digital and physical resources connected to those online
services) are protected from misuse. Therefore, we discuss the
general authorization model of trigger-action platforms next.

Authorization Model. Online services protect their REST
APIs using authorization protocols. OAuth is a popular choice
that enables an online service to provide third parties with
secure delegated access to its APIs. A trigger-action platform
must obtain authorization to communicate with online services
that its channels represent; and therefore must follow the
OAuth authorization workflow. Figure 2 shows the four-step
authorization model.

First, a channel developer (trigger-action platform develop-
ers or the online service provider itself) must create a client
application for the online service’s REST API. This client
application represents a channel on the online service. During
the sign-up phase, the online service assigns a client ID and a
secret that the trigger-action platform uses during authorization.

Second, a user initiates a channel connection within the
trigger-action platform administrative interface and this causes
the platform to initiate the OAuth 2.0 authorization code flow—
the recommended workflow for server-to-server authorization—
that results in the platform requesting the corresponding online
service for a short authorization code on behalf of the user.
The platform passes a client identifier value, a redirect URI,
and a scope value as part of the HTTP(S) request. The scope
value represents the level of access the trigger-action platform
is requesting to operate a channel. This authorization request
results in the user being presented with an OAuth permissions
screen that explains the scope that the platform is requesting.
As the OAuth protocol does not specify the design of the
permissions screen, the screen design, scope explanations, and
UI options to modify the requested scopes is at the discretion
of the online service.

A go
Trigger-Action

Platform Service

A,

User

Channel Signup

setup IF Client application
Phase

[Client ID, Secret, ...]

Request Channel Connection

Request Authorization Code
[Client ID, Redirect URL, Scope, ...

User-to-Service
Authorization

Request User Authorization

Login & Authorize

Authorization Code

Service-to-Service

Authorization Request Access Token

[Client ID & Secret, Auth. Code, ...]

Access Token

API Call

Activity
Phase

API Response

Fig. 2: The OAuth-based authorization model for trigger-action
platforms has four phases. Channel developers create client
applications for the online service that results in the online
service assigning a client ID and secret to the application. Then,
the trigger-action platform initiates an authorization workflow.
The OAuth 2.0 authorization code flow is a popular choice,
and it results in the platform gaining a scoped bearer token that
authorizes a channel to invoke APIs on an online service. Users
are prompted to approve scope requests during this process.

Third, assuming the user accepts the scope request, the
online service redirects to the trigger-action-platform-provided
redirect URI with a short authorization code as an argument.

Finally, the platform exchanges the authorization code,
client ID, and client secret for an access token using server-to-
server communication. The trigger-action platform then uses
the OAuth bearer token to initiate API calls on the online
service to implement channel functions.

Although OAuth 2.0 is by far the most popular authorization
protocol in trigger-action platforms, there are online services
that use OAuth 1.0a. OAuth 1 does not have explicit scoping as
part of its authorization workflow, but offers a similar concept
when a client application signs up for the online service’s APL
During this phase, the developer can choose scopes to enable.
For example, Twitter uses OAuth 1.0a, and it provides a settings
item that allows a developer to change the access level of the
client application, and hence, to change the scope of any tokens
issued in the future.

III. SECURITY IMPLICATIONS OF TRIGGER-ACTION
PLATFORMS

In this section, we discuss the security risks that trigger-
action platforms pose to a user’s digital and physical resources.
We focus on risks that arise due to high-level design choices,
and do not focus on low-level implementation errors that might
enable these risks (e.g., XSS, SQL Injection, OS bugs). The
risks we focus on are due to a compromise of the trigger-action
platform, and are due to OAuth deployment issues. We do not

focus on a compromise of the online services of the users—
such an attack is independent of any trigger-action platform.
For example, if a user’s Facebook account or Google Home
account was hacked, then an attacker can manipulate data and
devices independently of any trigger-action platform the user
may be using.

A. Platform Compromise

Cloud services, including trigger-action platforms, can be
compromised through bugs in its implementation or design,
through social engineering attacks, or through a combination
of these. As all of the platforms we discussed in §II are cloud
services, an exploit could target any software in the web stack.
Indeed, such compromises are common occurrences today. In
2015 alone, more than 700 million user records were exposed
through 1673 data breaches [8]. Prominent examples of cloud
service breaches include Target [16], US voters database [1],
Dropbox [9], and the recent Google Docs OAuth-based phishing
attack that compromised one million users [36]. Therefore, even
well-designed cloud services are not immune to persistent and
sophisticated threats.

Thus, we are concerned with the risks posed to users’ digital
and physical resources as a result of a trigger-action platform
compromise. The main security mechanism guarding user
resources is the set of OAuth tokens. These OAuth tokens are
often long-lived.”> An attacker who compromises the platform
will be able to use the OAuth tokens to invoke operations on
the users’ resources arbitrarily.

Furthermore, trigger-action platforms today follow a logi-
cally monolithic design—a compromise of the platform implies
that OAuth tokens for all users will be accessible to the attacker.
Therefore, we conclude that the choice of standard OAuth
tokens coupled with a logically monolithic design poses a
large-scale security risk to users’ digital and physical resources.

B. Risks from OAuth Token Compromise

Trigger-action platforms do try to limit the risks of misuse
of OAuth tokens by constraining the set of operations available
on the channels. For example, IFTTT does not expose the
operation of deleting files on the Google Drive channel because
deleting files is considered too risky (it can lead to accidental
or malicious loss of all data on a user’s Google drive). A
research question is whether the OAuth tokens acquired by
these services, if compromised, can be misused to perform risky
operations. We call this the problem of overprivileged tokens.
We performed a case study on the popular IFTTT trigger-action
platform to study the overprivilege aspect. We note that it is not
our aim to be exhaustive in our analysis of overprivilege, as it is
a known problem in OAuth systems—for example, Chen et al.
discuss OAuth issues in the context of mobile applications [21].
Rather, our goal here is to highlight the risks that still exist
in trigger-action platforms, despite attempts to limit them by
eliminating dangerous operations on their channels.

2Even if they are not, these tokens can be refreshed using information stored
in the trigger-action platform.

Channel Scope Example Overprivileged APIs Description
Google Drive drive, userinfo, https://www.googleapis.com/drive/v3/files/file-id Deletes a file
userinfo.profile, - - - . —
feeds, feed, https://www.googleapis.com/drive/v3/files/file-id/permissions Creates a permission
spreadsheets, for a file
documents https://www.googleapis.com/drive/v3/files/file-id/revisions/rev-id Permanently deletes a
revision of a file
Particle ifttt https://api.particle.io/v1/devices/device-id Flashes a device with a

pre-compiled binary

https://api.particle.io/v1/devices/device-id

Unclaims a device

https://api.particle.io/v1/devices/device-id

name=new_name

WITH BODY Renames a device

MyFox Home Control nil
recording/stop

https://api.myfox.me:443/v2/site/site-id/device/cam-id/camera/

Stops camera recording

https://api.myfox.me:443/v2/site/site-id/device/dev-id/heater/on Sets

s

heater to ‘on
mode

https://api.myfox.me:443/v2/site/site-id/device/dev-id/socket/on or /off

Turns a device on or off

TABLE II: Examples of overprivileged APIs that IFTTT channels can access. These APIs are not used in any triggers or actions.

We shortened Google Drive scope names for brevity.

1) Case Study Procedure: The goal of our case study is
to examine the use of overprivileged tokens in trigger-action
platforms. We focused our case study on IFTTT [10] due
to its popularity and integration with a wide variety of IoT,
smart home devices, and online services. For our study, we
selected channels which had their online service API open
to developers. Studying these channels and comparing their
triggers and actions with the capabilities of the OAuth token
obtained by IFTTT allowed us to isolate API calls that are
not used by any trigger or action, but are accessible using the
OAuth token.

2) Case Study Results: Table 1I shows a summary of our
case study results. We find that in all cases, the OAuth tokens
that IFTTT possesses are overprivileged. The root cause for
overprivilege arises from:

e Coarse-grained scopes: Online services were not designed to
support only trigger-action platforms. They are designed to
support the most general of use cases. Therefore, the OAuth
scopes are often coarse-grained, and may not necessarily be
fine-grained enough to support only the set of trigger and
action functions for channels in the IFTTT platform. This
problem is not unique to IFTTT. Rather, it is common to all
trigger-action platforms.

e Balancing usability and security: The channel abstraction
strikes a balance in the usability-security trade-off. Users
must “connect” a channel to their account on IFTTT and
this includes the user following an OAuth authorization flow.
As this process is done once per channel, users do not
have to perform OAuth authorization flows whenever they
create a rule. Alternatively, users would have to perform an
authorization flow for every rule they create if the channel
abstract did not exist, leading to a drastic increase in the
number of permission prompts. Although the channel design
reduces the number of OAuth permission prompts to one per
channel connection step, it does force IFTTT to request
OAuth scopes that are powerful enough to execute all
operations that it currently supports, and possibly even future-
proof itself by requesting a coarser-grained set of scopes

for operations that might be supported in the future. This
problem is not specific to IFTTT. Rather, it is common to any
trigger-action platform that supports the channel abstraction.

We provide more detail on the overprivilege in our case
studies below:

Google Drive. Our API testing reveals that the Google Drive
IFTTT channel has the ability to delete a user’s files. We
confirmed this behavior using a token with the same scope as
what the Google Drive IFTTT channel requests. This can cause
data loss if the corresponding token is stolen. We observe that
the Google Drive channel requests multiple scopes. However,
the OAuth prompt only provides the user with a binary choice
of approving or denying the request.

Particle. Our API testing reveals that the Particle IFTTT
channel has the ability to flash new firmware to a chip. We
used a token with scope=1ifttt, which is identical to what
the Particle IFTTT channel requests, and reprogrammed a chip
by simply using a REST API call. This can completely change
the functionality of the Particle chips and cause a variety of
security and safety issues if the corresponding token is stolen.
We also observe that the Particle OAuth prompt only provides
the user with a binary choice of either approving or denying
the permission request.

MyFox Home Control. This channel can arm or disarm the
MyFox security system. However, our API testing reveals that
it has overprivileged access to the MyFox Home Control API
that allows it to stop live video recording, turn on/off electric
devices, and change the state of the heaters. This can result
in security breaches, overheating and large utility bills if the
corresponding token is stolen. We also observe that MyFox
Home Control does not provide any kind of scoped access.
This forces the channel to request complete access to the API.
Furthermore, the MyFox Home Control OAuth prompt only
provides a binary choice during authorization—either approve
all requested permissions, or deny the request.

We conclude that the OAuth tokens that trigger-action
platforms negotiate can be overprivileged: (1) online services

only provide a fixed set of scopes that can be incompatible
with the channel operations of the platform, forcing it to
request overprivileged access, (2) the usable channel abstraction
necessitates tokens that can invoke multiple APIs in the online
service, even if the user does not create rules that use all those
APIs.

Therefore, trigger-action platforms pose a long-term security
risk to users’ digital and physical resources. An attacker who
compromises the platform can misuse OAuth tokens to execute
APIs arbitrarily, and can even invoke APIs outside the abilities
of the trigger-action platform itself due to overprivilege.

IV. TOWARDS MITIGATING RISKS OF TRIGGER-ACTION
PLATFORMS

Our high-level goal is to develop a defense mechanism that
mitigates the security risks outlined above. In this section, we
first discuss our threat model, which we derived from our earlier
analysis. We then explore candidate designs and highlight their
shortcomings. Finally, we introduce the Decentralized Action
Integrity concept, and discuss why it provides meaningful
security guarantees for trigger-action platforms. We also discuss
challenges in applying this concept to real platforms.

A. Threat Model

We adopt a strong but realistic attacker model—we assume
that the trigger-action platform is untrusted, and can be
compromised. An attacker can leak OAuth tokens, and then
attempt to invoke actions arbitrarily. An attacker can also
try to manipulate any triggering data passing through the
platform. We assume that the online services of the user such

as Facebook, Samsung SmartThings etc., are not compromised.

If they are compromised, then an attacker can achieve its goals
independently of the trigger-action platform.

The following aspects are outside our threat model. We do
not prevent leakage of sensitive data (e.g., the fact that a trigger
has happened, or an attacker eavesdropping rule execution)
from a compromised trigger-action platform (§VII contains a
discussion of techniques to enable data confidentiality). We
also do not prevent denial of service attacks.

B. Design Space Exploration

Under the above threat model, we discuss candidate designs
to mitigate the security risks of a compromised trigger-action
platform. We also highlight where these candidate designs
fall short of providing necessary security and functionality
properties. Our goal is to prevent attackers who have stolen

the platform’s OAuth tokens from arbitrarily invoking actions.

We are concerned with actions because they have the ability
to change the state of data and devices. In a physical setting,
this can have dangerous physical consequences.

Short-Lived OAuth Tokens. One option is for online services
to issue OAuth tokens that must be refreshed frequently. If the
trigger-action platform is compromised, the online services can
simply stop processing refresh requests from the trigger-action
platform, and it can expire all issued tokens. This technique
reduces the useful attack window to the refresh interval plus
the time it takes for the knowledge that the platform was
compromised to propagate to the online services. However, it

relies on timely detection of the compromise. The strategy also
depends on the existence of a separate signaling mechanism
that the platform operator can use to contact the online services,
as the platform itself is under the control of the attacker in the
worst case.

Fine-Grained Tokens and Per-Rule Permission Prompts. If
online services support very fine-grained tokens, trigger-action
platforms could request tokens whenever a user programs a rule.
Therefore, the trigger-action platform only has the amount of
privilege necessary to execute rules. However, this increases the
number of permission prompts for users, leading to usability
issues. Additionally, attackers can still misuse fine-grained
tokens. As we discuss later, our work improves on this basic
approach by solving the misuse and usability issues.

Avoiding Bearer Tokens. Another solution is to use OAuth 1.0
tokens because these are not immediately useful to attackers if
they are stolen in isolation. It requires stealing the signing key
as well. However, if the trigger-action platform is compromised,
then the attacker gains access to the signing key as well.

Fully Decentralized Platform Construction. A different
approach would be to avoid amassing OAuth tokens